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The choice of either induction or postrem-
ission therapy for adults with acute my-
eloid leukemia is still largely based on the
“one size fits all” principle. Moreover,
pretreatment prognostic parameters, es-
pecially chromosome and gene abnor-
malities, may fail in predicting individual
patient outcome. Measurement of mini-
mal residual disease (MRD) is nowadays
recognized as a potential critical tool to

assess the quality of response after che-
motherapy and to plan postremission
strategies that are, therefore, driven by
the individual risk of relapse. PCR and
multiparametric flow cytometry have be-
come the most popular methods to inves-
tigate MRD because they have been estab-
lished as sensitive and specific enough
to allow MRD to be studied serially. In the
present review, we examine the evidence

supporting the appropriateness of incor-
porating MRD detection into the AML risk
assessment process. A comprehensive
prognostic algorithm, generated by com-
bining pretreatment cytogenetics/genet-
ics and posttreatment MRD determina-
tion, should promote advances in
development of personalized therapeutic
approaches. (Blood. 2012;119(2):332-341)

Introduction

In adult patients with acute myeloid leukemia (AML), intensive
chemotherapy achieves complete remission (CR) rates ranging
from 50% to 80%. Despite these encouraging results, the majority
of responding patients will eventually relapse, with only 30% to
40% of young and less than 20% of elderly patients being
long-term survivors.1-5 Advances in biologic characterization are
expected to provide a more proper risk stratification of AML,
allowing delivery of treatments proportional to the real aggressive-
ness of disease. In this view, cytogenetic abnormalities represent
the most reliable prognosticator in adult AML.6-10 Identification of
specific gene abnormalities (eg, FLT3, NPM1, CEBPA, and
DMNT3A) has further improved prognostic allocation of patients
with AML, especially within homogeneous karyotypic groups
(ie, intermediate karyotypes or favorable karyotypes), where the
possible concomitant mutations of KIT, occurring in the context of
core binding factor (CBF) translocations, confer a negative progno-
sis.11-15 A proper assignment to low- or high-risk category is a
critical step in the therapeutic decision-making process of patients
with AML. Indeed, patients belonging to the low-risk category
would not benefit from routine use of allogeneic stem cell
transplantation (ASCT) in first CR because any advantages in
terms of reduced relapse incidence will be counterbalanced by
procedure-related morbidity and mortality.16 On the other hand,
missing early identification of high-risk patients might hamper or
delay the timely use of intensive treatments, such as ASCT.17

However, it is also well recognized that cytogenetic/genetic
signature cannot always reliably predict outcome in individual
patients; indeed, approximately 40% to 50% of those with favor-
able karyotype will eventually experience a relapse. In this view,
measure of minimal residual disease (MRD) promises to be an
efficient tool to establish on an individual basis the patient’s
leukemia’s susceptibility to treatment, enhancing delivery of

risk-adapted therapies.18,19 Despite these premises, the systematic
applicability of MRD analysis in AML is not yet accomplished. For
cases with a genetic signature that accounts for 60% to 70% of
AML, the molecular approach still suffers from lack of standard-
ized assays and cut-offs. Similarly, although flow cytometry can
potentially investigate more than 85% of AML, its widespread
applicability is complicated by lack of standardized procedure. The
present review will focus on the technical issues and clinical
relevance of MRD determination in non-M3 AML. In particular,
we will try to outline how MRD assessment might improve risk
stratification.

The case of outcome prediction

Clonal chromosome alterations are detected in AML in more than
50% of adults and are universally considered the strongest predic-
tor of duration of response and overall survival (OS). Based on
cytogenetics, patients are generally stratified into 3 risk groups:
favorable, intermediate, and unfavorable.6-10 Accordingly, patients
falling into the category of favorable risk karyotype (F-RK) can
expect an approximate 65% to 70% likelihood of cure, those who
have an intermediate risk karyotype (I-RK) an approximate 40%
chance of long-term disease-free survival (DFS), whereas patients
belonging to the unfavorable risk karyotype (U-RK) category have
a very dismal outcome, with less than 5% to 10% becoming
long-term survivors.6-10 However, it has become clear that cytoge-
netic risk allocation may help guide therapeutic decision, particu-
larly for those who are at the extremes (F-RK or U-RK), whereas,
because of the heterogeneity of this category, for patients within
I-RK the therapeutic decision may be problematic. Indeed, 40% to
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50% of patients categorized in this group lack any clonal abnormali-
ties on standard cytogenetic analysis. Furthermore, together with
cytogenetically normal AML (CN-AML), the I-RK also includes a
miscellany of different structural and numerical changes that are
too infrequent to be reliably assigned a prognostic significance and
are not encompassed in the 2 other risk groups. In recent years,
various molecular markers have been identified, allowing to dissect
further cytogenetically defined subsets.20 This is critical to risk
assessment of patients with CN-AML (Table 1). Although the
expectations of using genetics to guide therapy were enormous, the
delivery to the clinics has made slow progress and the therapeutic
strategy for most patients still remains controversial. On one side,
risk assessment based on pretreatment factors composes a large
group of patients with broad differences in terms of risk of relapse.
On the other side, fitting the increasing number of new gene
abnormalities into a practical, prospective, decision-making algo-
rithm is a very difficult task. Indeed, the excess of dissection in
homogeneous genetic subsets may lead to a plethora of subgroups
failing to provide physicians with an adequate statistical power
(Figure 1). A reasonable way to improve outcome prediction in
AML might be attained by combining pretreatment and posttreat-
ment parameters into a common prognostic algorithm. Such a
hypothesis found acceptance in a seminal manuscript published by
Wheatley et al who generated a prognostic scoring system by
integrating pretreatment cytogenetics and achievement of CR after
1 or 2 cycles of induction therapy.21 Patients with U-RK who
entered CR after 2 induction courses had the worst outcome. The
design of the analysis represented a first attempt to put together into
a risk stratification algorithm 2 different classes of prognostic
parameters: pretreatment factors and indicators of the quality of
response after a chemotherapy-induced morphologic CR. Nowa-
days, such a working hypothesis can be developed further, thanks
to the availability of techniques, such as PCR and multiparametric
flow cytometry (MPFC). These techniques can reliably detect, at
high sensitivity, leukemic cells at submicroscopic level, thus
offering the opportunity to investigate MRD.18,19 Assessment of
MRD promises to be a powerful and accurate tool to refine
patients’ risk category assignment as initially established on the
basis of the sole cytogenetic/genetic findings.17,22,23

The quest of residual leukemia

PCR and MPFC have proven sensitive and specific enough to allow
MRD to be investigated and represent today the gold standard for
MRD monitoring in AML.

MRD detection by PCR

Leukemic fusion genes. The power of PCR relies on cloning of
breakpoints of the chromosomal rearrangements and allows their
detection in the postremission phase in at least 30% of the patients,
using RT-PCR or real-time quantitative PCR. Common targets for
PCR-based MRD detection are fusion transcripts of CBF-positive
AM (eg, RUNX1-RUNX1T1, CBFB-MYH11, and MLL-gene fu-
sions). RT-PCR in CBF-positive AML has a limited clinical
applicability as persistent PCR positivity has been observed in long
survivors even after ASCT.24 Real-time quantitative PCR has
proven potentially more valuable because of its capability to
anticipate impending relapse during follow-up monitoring.25 In a
recent report, Corbacioglu et al established clinically relevant
MRD cut-points at which persistence of CBFB-MYH11 transcript
positivity singled out patients with significantly increased risk of
relapse.26 The authors conclude that monitoring of CBFB-MYH11
transcript levels should be incorporated into future clinical trials to
guide therapeutic decisions.26

Mutations. The discovery of gene mutations in fusion gene-
negative AML has potentially increased to 60% to 70% the
percentage of cases suitable for PCR-based MRD monitoring
(Table 1).27-59 The key question about the use of these genes as
candidates for MRD monitoring regards their stability over the
course of disease. The receptor tyrosine kinase FLT3 is mutated in
a relevant proportion of CN-AML. Mutations resulting in the
constitutive activation of FLT3 have been identified in 2 functional
domains of the receptor: the juxtamembrane domain and the split
tyrosine kinase domain.28,29 The juxtamembrane domain is dis-
rupted by internal tandem duplications (ITDs) of various sizes in
28% to 34% of CN-AML, whereas point mutations of the tyrosine
kinase domain codon 835 or 836 have been reported in 11% to 14%
of CN-AML.30-32 The role of FLT3-ITD in MRD monitoring is
controversial: lack of stability of FLT3 mutations in paired samples
from diagnosis and relapse raises concerns about the clinical
usefulness of this marker.29,36 However, some authors claim that
this lack of longitudinal stability might relate to lack of sensitivity.
Using high-sensitivity RT-PCR, it was observed that, in all 25 cases
under study, FLT3-ITD was detected at diagnosis and relapse. In
4 of them, relapse was predictable based on serially documented
reappearance of FLT3-ITD. These results suggest that there is still
room for revisiting the role of FLT3-ITD as a potential marker for
MRD monitoring.60 Although there are only initial experiences
dealing with the use of CEBPA and MLL-PTD in MRD monitor-
ing,61,62 increasing knowledge is being accumulated on the role of
NPM1 mutations. NPM1 mutations can be identified in 45% to
60% of patients with CN-AML, accounting for the most frequent
genetic change in this subset. The mutational event modifies
specific nucleoli binding and nuclear export signal motifs coded by
exon 12 and determines an abnormal cytoplasmic localization of
NPM1.37,38 Approximately 40% of patients with NPM1 mutations
also carry FLT3-ITD. Some studies indicate that NPM1 mutations
are very stable at relapse, and thus that they might have a role in
MRD assessment.63 Schnittger et al developed a highly sensitive
real-time quantitative PCR assay able to prime 17 different
mutations of NPM1.64 In 252 NPM1-mutated AML, high levels of

Figure 1. Pie chart depicting the molecular heterogeneity of CN-AML. The
analysis is based on mutations in the NPM1, CEBPA, MLL, and FLT3 (ITD and
tyrosine kinase domain [TKD] mutations at codons D835 and I836), NRAS, and WT1
genes. Data are derived from mutational analysis of 485 younger adult patients with
CN-AML from the German AML Study Group.90
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NPM1mut, quantified at 4 different time points, were significantly
correlated with outcome at each tested time point. Multivariate
analysis, including age, FLT3-ITD status, and the level of NPM1,
demonstrated that the latter was the most relevant prognostic factor
affecting event-free survival during first-line treatment, also in the
subgroup of patients who underwent ASCT. Furthermore, the
authors compared the kinetics of NPM1 and FLT3-ITD fluctuations
and found that FLT3-ITD levels suffer from an unpredictable
instability, making it unreliable for MRD purposes.29,36 In a further
refinement of such an approach, Krönke et al demonstrated that the
level of NPM1mut, measured after double induction and consolida-
tion therapy, impacted on OS and cumulative incidence of relapse
(CIR; P � .001 for all comparisons).65

Gene overexpression. Techniques of real-time quantitative
PCR intended to quantify genes overexpression theoretically
provide the opportunity to study the whole population of AML.
Various candidates have been proposed, with WT1 being the most
reliable. Retrospective clinical data indicate that WT1 assessment
after induction therapy is a predictor of outcome, with lower levels
being associated with long-term remission.66 WT1 overexpression
can be exploited as a marker to establish the presence, persistence,
or reappearance of leukemic hematopoiesis. Cilloni et al have
measured the levels of WT1 after chemotherapy-induced morpho-
logic CR, in peripheral blood (PB), and BM of patients with
AML.67 In multivariate analysis, they found that a more than or
equal to 2-log MRD reduction in PB and/or BM was associated
with a significantly lower CIR (P � .004). Although the manu-
script is of outstanding relevance because of the provision of a
common standardized protocol on the behalf of the LeukemiaNet,
only in 46% and 13% of PB and BM samples, respectively, were
the levels of WT1 sufficiently overexpressed, compared with
normal samples, to allow a prognostic stratification. Based on this,
concerns still remain about the confounding role of the physiologic
background of WT1 in normal PB and BM.

MRD detection by flow cytometry

MRD monitoring by MPFC relies on the expression of “leukemia-
associated immunophenotypes” (LAIPs) defined as the presence of
a combination of antigens and/or flow cytometric physical abnor-
malities that are absent or very infrequent in normal BM. The
growing interest surrounding this technique is because of its wide
applicability (� 85% of AML), quickness, specificity, and ability
to distinguish viable cells from BM debris and dead cells.
Furthermore, the diffusion of devices equipped with multiple lasers
allowed implementation of multiple color assays (� 4 or 5 mono-
clonal antibody combinations), thus favoring increment of sensitiv-

ity that, now, can be reasonably placed in between 10�4 and 10�5.
An additional advantage of multiple color assays consists of a
significant attenuation of concerns of phenotypic shifts that can be
observed on recurrence.68 There is evidence that the use of an
expanded 6-9 color polychromatic assay not only increases sensitiv-
ity69 but also results in improved qualitative information on the
leukemic clone because of the superior definition of its phenotypic
composition. In this context, MRD monitoring might not be
compromised, especially if serial determinations are performed.
The results from the literature demonstrate that detection of MRD
by MPFC is technically sound and represents a powerful tool to
segregate patients with AML into categories of risk (Table 2). Most
studies do not deal with the MRD issue as a simple matter of a
positive or negative finding; rather, they set a threshold below or
above which the outcome can be significantly different. A common
approach is to set up empirically the most significant level of MRD
by choosing a logarithmic scale (eg, 101, 102, 103) or a quartile
segregation that correlates with survival estimates and CIR. An
alternative approach relies on the evaluation of the prognostic role
of MRD in a continuous variable model. In the experience of Kern
et al, such an analysis demonstrated a strong correlation with
outcome when assessed on day 16 from induction and after
consolidation.70,71 However, when it came to stratifying the patients
in low- or high-risk categories, significant thresholds were identi-
fied. At least 4 manuscripts tried to address the issue of MRD
“prognostically significant levels” applying specific statistical
methods that would help selecting thresholds more appropri-
ately.72-75 In the paper by Al-Mawali et al, to determine the optimal
cut-off yielding the best segregation of AML patients into catego-
ries of risk, a receiver operating characteristic analysis was carried
out.75 The threshold was established at the value of 0.15% residual
leukemic cells; therefore, patients with MRD more than 0.15%
qualified as MRD-positive, whereas those with MRD less than or
equal to 0.15% as MRD-negative. We evaluated the trend of
standardized log-rank statistics using relapse-free survival (RFS)
and OS as dependent variables and the values of residual leukemic
cells determined after induction and consolidation as independent
variables (maximally selected log-rank statistics).76 Based on the
results of this test, we currently use the value of 0.035% BM
residual leukemic cells to discriminate MRD-negative from MRD-
positive cases, both after induction and consolidation. Although the
use of a dedicated statistical approach to establish the threshold for
MRD negativity/positivity is recommended, the reproducibility of
that specific threshold throughout different laboratories still re-
mains an issue. Should we select a particular cut-off that different

Table 2. MRD by MPFC studies including more than 50 patients

Reference
No. of

patients Time point

Threshold
postinduction,

%

Threshold
postconsolidation,

% Method
Multivariate

analysis
Survival

parameter

San Miguel77 53 I, C 0.5 0.2 NA I,C RFS

Venditti87 56 I, C 0.045 0.035 empirical C OS, RFS

San Miguel78 126 I � 0.01 0.01-0.1, 0.1-1, � 1 NA NA I RFS

Kern70 62 I, C Continuous analysis

log-difference

Continuous analysis

log-difference

75th percentiles of log difference C RFS

Kern71 106 Day 16 after start

of induction

Continuous analysis

log-difference

NA Median of log difference Day 16 after start

of induction

EFS, RFS

Buccisano72 100 I, C 0.035 0.035 Maximally selected log-rank statistic C OS, RFS

Maurillo73 142 I, C 0.035 0.035 Maximally selected log-rank statistic C OS, RFS

Al Mawali75 54 I 0.15 0.15 ROC analysis I RFS, OS

I indicates induction; C, consolidation; NA, not available; EFS, event-free survival; and ROC, receiver operating characteristic.
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laboratories can refer to or should any laboratory set up its own? A
universal cut-off would be desirable, but it might represent a very
troublesome mission to accomplish because standardizing thresh-
olds is affected by a number of technical (equipment, fluoro-
chromes, sensitivity of LAIPs, procedures of acquisition and
analysis) and clinical factors. Among clinical factors, the different
intensity of chemotherapeutic regimens delivered may play a
critical role. Indeed, the clinically relevant threshold of MRD may
depend on the therapy used and might change with changes in
therapeutic schedule. Divergence between our experience72,73 and
that of San Miguel et al is an example of such a situation.77,78 In the
study of San Miguel et al, the induction, consolidation, and
intensification therapy consisted of the combination of an anthracy-
cline and cytosine arabinoside.77,78 In our study, the patients were
treated on 3 drug-based regimens, associating an anthracycline
with cytosine arabinoside and etoposide.72,73 In addition, cytosine
arabinoside administration was prolonged through 10 days instead
of the conventional 7 during the induction phase. Thus, one may
assume that, in the study of San Miguel et al, the less intensive
therapy delivered was associated with a milder debulking effect
that in turn may account for the higher level of MRD at which a
significant influence on disease outcome was found.77,78 Based on
this, we can also assume that each new protocol will most likely
define a new threshold.

PB versus BM MRD detection

PB may represent an alternative source of cells for the purpose of
MRD studies. This is based on the assumption that the presence of
circulating blasts at the time of CR might reflect the persistence of
malignant cells in the BM. Studies using real-time quantitative
PCR to monitor MRD in CBF-positive AML showed that the
transcripts were detectable in PB and BM with a comparable
sensitivity.79,80 The levels of WT1 transcript measured after consoli-
dation in PB and BM were found to be equally associated with the
risk of relapse, and the sensitivity of PB WT1 analysis resulted to be
equivalent if not better than that of BM.66,67 We have demonstrated
the feasibility of MRD detection in PB of 50 adult AML patients
using MPFC.74 The levels of MRD after induction and consolida-
tion in PB significantly reproduced those observed in BM (r � 0.86,
P � .0001; and r � 0.82, P � .0001; respectively). A level of
MRD more than 0.015% in PB after consolidation was associated
with a significant likelihood of subsequent relapse and a shorter
RFS. Our data suggest that PB may be a complementary source of
cells for MRD studies in patients with AML. In addition, combined
measurement of MRD in BM and PB might improve the risk
stratification process. The clinical impact of MRD contamination
of PB apheresis product is a further subject of research because it
has been associated with a shorter RFS and OS.81 Further studies
are warranted to clarify these issues.

When MRD assessment is clinically relevant

Timing of PCR assessment

As soon as experience was accumulated, it became clear that
selection of the most appropriate time point to determine MRD was
a key issue to have a risk-adapted approach transposed into the
clinical reality. Ideally, such a time point should be the one having

the power to provide the most informative prognostic indication, so
that the choice of postremission therapy is driven by the actual risk
of relapse. The paradigm of such a situation is represented by acute
promyelocytic leukemia, where the persistence of PML-RARA
fusion transcript at the end of consolidation therapy or subsequent
recurrence of PCR positivity in patients previously in molecular
remission was demonstrated to precede overt relapse.82,83 CBF-
positive cases have been extensively investigated by real-time
quantitative PCR for MRD persistence at specific time points.
Perea et al found that MRD positivity was associated with an
increased risk of relapse at any time of assessment but only MRD
persistence at the end of treatment and during subsequent fol-
low-up significantly anticipated relapse.24 Similar results have been
reported in CBFB-MYH11 AML by Corbacioglu et al who identi-
fied in the postconsolidation and early follow-up phase (� 3 months)
the critical time points allowing patients at higher risk of relapse to
be recognized.26 Krönke et al observed that detection of high
NPM1mut transcript levels after double induction and consolidation
correlated significantly with an increased CIR.65 In accordance
with what we have learned by assessing MRD in acute promyelo-
cytic leukemia, experience with CBF-positive and NPM1mut AML
appears to indicate that MRD levels as measured at delayed rather
early time points are of superior prognostic relevance. At variance
with this assumption, Cilloni et al suggest that risk stratification is
indeed improved by early assessment.67 Indeed, they reported an
increased risk of relapse when the level of WT1 failed to reduce
more than or equal to 2-log after induction; the magnitude of WT1
reduction remained independently significant, even after adjusting
for competitive covariates, such as age, white blood cell count, and
cytogenetics. A final issue pertains to the hypothesis that the
optimal sampling interval varies with molecular subgroups. Om-
men et al have demonstrated that the kinetics of molecular relapse
are remarkably different among NPM1, PML-RARA, RUNX1-
RUNX1T1, and CBFB-MYH11 AML.84 The authors derived a
mathematical model to investigate the molecular relapse and the
time from molecular relapse to hematologic relapse. They found
that CBFB-MYH11 AML displayed a slower clone regrowth than
AML with other molecular signature. These results will potentially
optimize MRD monitoring, allowing the identification of suitable
sampling intervals for other molecular signatures.

Timing of MPFC assessment

With regard to the MPFC approach, the issue of the best time point
is even more controversial. The German AML Cooperative group
demonstrated that assessment of MRD persistence on day 16 from
induction and the log-difference between MRD-positive cells on
day 1 and 16 from induction represented an independent prognostic
factor affecting CR, event-free survival, OS, and RFS.71 However,
it is important to note that this analysis is something different from
MRD assessment, for it pertains to the concept of “speed of blast
clearance.” “Speed of blast clearance” is supposed to reflect the
chemosensitivity of the leukemic clone, but it does not necessarily
relate to the quality of response as determined, later on, on full
hematopoietic reconstitution. To the best of our knowledge, no
formal demonstration has been published on the correlation
between “fast blast clearance” and achievement of MRD negativ-
ity.85,86 San Miguel et al demonstrated that a stratification according
to levels of MRD less than 0.01%, 0.01% to 0.1%, 0.1% to 1%, and
more than 1% after induction therapy, resulted in significant
differences in OS.77,78 Al-Mawali et al found that a threshold of
0.15% residual leukemic cells discriminated MRD-negative from
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MRD-positive cases with optimal sensitivity and specificity, allow-
ing impending relapse to be predicted at postinduction and
postconsolidation time points.75 Multivariate analysis showed that
the postinduction MRD level affected independently RFS and OS.
However, also diverging opinions have been published supporting
the hypothesis that delayed time points may be even more
informative compared with earlier ones. We demonstrated that
levels of MRD more than or equal to 0.035%, as measured after
consolidation therapy, predicted a high frequency of relapse and a
short duration of OS and RFS; the prognostic role of MRD
positivity after consolidation was confirmed in multivariate analy-
sis.72,73,87 In line with our experience, Kern et al reported that the
75th percentile of the MRD log-difference between the first day of
induction and postconsolidation time point was the sole variable
dividing the patients in 2 groups with significantly different OS.70

Selecting an early or delayed time point for MRD determination
might entail the choice of different therapeutic options: the early
time point option may prove useful to identify as soon as possible
high-risk patients for whom a fast allocation to very intensive
treatments is required. For these patients, approaches, such as
dose-dense schedule88 and/or ASCT, could be incorporated into the
upfront treatment strategy.89 On the other hand, opponents of this
hypothesis raise concerns about situations of overtreatment for
patients showing a slow blast clearance. In our experience,
approximately 30% of patients who are MRD-positive after
induction become negative at the end of consolidation and the
clinical outcome of these “slow responders” was not significantly
different from that of patients who tested MRD-negative soon after
induction.72,73 Finally, we think that special consideration should be
given to specific situations where a serial sampling may be
recommended. In our experience, sequential MRD monitoring is
required in the phase after autologous stem cell transplantation to
enhance detection of impending relapse in patients who are
MRD-negative after consolidation.90

Outcome prediction: cytogenetics/genetics,
MRD, or both?

In AML, cytogenetic and molecular findings at diagnosis are
critical determinants of outcome and allow stratification of approxi-
mately 40% of patients into “good risk” (based on the presence of
mutated NPM1 without FLT3-ITD or F-RK) or “poor risk”
(FLT3-ITD mutations or U-RK) categories.91 Good risk patients
achieve high OS and DFS rates with standard treatments, whereas
poor risk do unsuccessfully without intensified therapy with ASCT.
On the other hand, there are no accepted criteria to direct the
decision-making process after induction/consolidation for patients
included in the I-RK (� 60%). For these patients, evaluation of
MRD status appears appropriate to extrapolate those at high
(MRD-positive) or low (MRD-negative) risk of relapse, for whom
differentiated treatments may be adopted. Based on this assump-
tion, we have tried to optimize risk assessment of patients with
AML by integrating evaluation of pretreatment cytogenetics/
genetics and MRD status at the postconsolidation time point.92 Of
143 adult patients, those with F-RK and I-RK who were MRD-
negative had 4-year RFS of 70% and 63%, and OS of 84% and
67%, respectively. Patients with F-RK and I-RK who were
MRD-positive had 4-year RFS of 15% and 17%, and OS of 38%
and 23%, respectively (P � .001 for all comparisons; Figure
2A-B). Likewise, FLT3 wild-type patients achieving a MRD-
negative status (Figure 2C-D) had a better outcome than those who
remained MRD-positive after consolidation (4-year RFS 54% vs
17% P � .0001, OS 60% vs 23% P � .002). Therefore, patients
with F-RK, I-RK, or FLT3 wild-type had a very different outcome
depending on MRD status at the end of consolidation. The
Children’s Oncology Group has recently carried out the same
analysis, based on which children with standard risk AML and
MRD positivity after the first induction were reallocated to the
high-risk category, whereas those MRD-negative were added to the

Figure 2. Subgroup analysis of RFS and CIR of
143 AML patients stratified according to pretreat-
ment karyotype or FLT3 status and levels of MRD
after consolidation. (A-B) Those with a level of residual
leukemic cells � 0.035% are referred to as intermediate
karyotype-MRD�, favorable karyotype-MRD�, or FLT-wt
MRD�, whereas those with levels � 0.035% are catego-
rized as intermediate karyotype-MRD�, favorable karyo-
type-MRD�, or FLT-wt MRD�. Survival outcomes of
these subsets and of U-RK and FLT3-ITD category are
shown (P � .001 for all comparisons). (C-D) FLT-wt
patients achieving a MRD-negative status show a better
outcome than those who remained MRD-positive after
consolidation (P � .001).
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favorable-risk cohort.93 This risk stratification system generated
2 new categories with a 3-year DFS of 20% and 68%, respectively
(P � .001). The authors conclude that cytogenetics, molecular
genotyping, and postinduction MPFC analysis provide a robust
means of stratifying pediatric AML into 2 risk groups with
significantly different outcomes.

The LSC residual disease

The role of the leukemic stem cell (LSC) in AML recurrence is now
more than a simple hypothesis. Relapses derive from re-expansion
of residual leukemic cells escaping the cytotoxic effect of chemo-
therapy; this leukemic cell population is thought to reside within
the stem cell CD34�CD38� compartment. Experimental data
indicate that LSC are more resistant to chemotherapy than the more
mature CD34�CD38� progeny and can be distinguished from their
normal counterpart because of the expression of LSC-specific
immunophenotype.94 Therefore, the concept of LAIP expression is
something that applies, even to LSC on which aberrant overexpres-
sion of CD47,95 CD123, and CD44 has been described.94 Among
markers of LCS aberrancy, C-type lectin-like molecule-1 (CLL-1)
promises to be one of the most appealing because its expression is
lacking on normal stem cells.96,97 Therefore, CLL-1 has the double
role of LSC specific antigen and potential target for future LSC
directed-therapy. Using a monoclonal antibody targeting CLL-1,
Terwijn et al demonstrated that a LSC frequency more than
1 � 10�3 after induction and more than 2 � 10�4 after the second
induction and consolidation predicted a short RFS (P � .00003 and
.004, respectively).98 By combining the residual LSC and the
“whole MRD” fractions, they came up with 4 different categories
whose outcome was the best for the group with a negative residual
LSC status.98 The persistence of residual LSC may explain why a
certain proportion of MRD-negative patients experience disease
recurrence: in our experience, such a proportion accounts for 20%
to 25% of MRD-negative patients. Therefore, monitoring of
LSC-LAIPs represents an additional tool capable to refine the
MPFC MRD assessment, and the combination of LSC-LAIPs and
“whole MRD blast” frequencies might prove useful to guide future
therapeutic intervention.

Implementing risk-adapted transplantation
policy

The choice of postremission therapy is too often driven by a
“genetic randomization” resulting in a given patient being allocated
to ASCT once the availability of an HLA-compatible sibling donor
is documented. Meta-analysis of large prospective studies indicates
that the beneficial effect of ASCT takes place as soon as the risk of
relapse exceeds 35% to 40%99; when probabilities of relapse are
below those percentages the risk of treatment-related mortality will
attenuate the survival advantage of this procedure. Furthermore,
the extensive use of ASCT is hampered by the paucity of candidates
(25%-30%) with a fully matched family donor. For the remaining,
even if a timely search of either international registries or cord
blood banks is started, the probability of identifying a suitable
donor is 46% and 73% at 3 and 6 months, respectively (W. Arcese,
personal oral communication, June 30, 2011). In the meantime,
almost 40% of candidates for transplant die of relapse or are
relegated to less effective approaches, such as chemotherapy or
autologous stem cell transplantation. We have demonstrated that an

adjusted risk stratification based on pretreatment genetics/
cytogenetics and MRD status at the end of consolidation refines the
upfront genetic/cytogenetic risk classification.92 In this view, MRD
assessment will greatly enhance selection procedures so that
patients are assigned to ASCT not on the basis of donor availability
but of the real risk of relapse.17 Applying this adjusted risk
stratification, we distinguished 2 categories of patients: (1) low-
risk: F-RK and I-RK, which were MRD-negative after consolida-
tion; and (2) high-risk: U-RK, FLT3-ITD mutated cases, F-RK and
I-RK, which were MRD-positive after consolidation (Figure 3).
After these observations, we started a program for high-risk AML
based on a prospective assignment to ASCT that should be
delivered in the form of matched sibling donor, matched unrelated
donor, umbilical cord blood, or haploidentical related donor
transplant. We analyzed preliminarily a cohort of 21 high-risk
patients who, according to the aforementioned policy, were as-
signed to ASCT (8 matched sibling donor, 7 matched unrelated
donor/umbilical cord blood, and 6 haploidentical related donor).
For comparative purposes, a matched historical cohort of 36
high-risk patients was analyzed: 12 were given matched sibling
donor-ASCT and 24, lacking a matched sibling donor, received
autologous stem cell transplantation. Survival estimates were
significantly better for the prospective cohort compared with the
control group (DFS 70% vs 20%, P � .000 47; OS 69% vs 24%,
P � .046; Figure 4). The prospective cohort also showed a lower
relapse rate (20% vs 52%, P � .003).

In conclusion, the paradigm of treatment for adult AML has
largely been based on the “one size fits all” approach: in the short
term, this has led to satisfactory rates of CR; but in the long term,
survival estimates for young and elderly patients are disappointing.
In acute promyelocytic leukemia and acute lymphoblastic leuke-
mia, MRD positivity has consistently been shown to increase
probabilities of relapse; therefore, attainment of MRD-negative
remission represents a “gold standard,” leading to prolonged
duration of CR.100 More recently, a trial of prospective MRD-
driven therapy has also been initiated in childhood non-M3 AML,
demonstrating an improvement of outcome in high-risk patients.101

Altogether, these observations suggest that, whatever the method,
even in non-M3 AML measurement of MRD will potentially
contribute refining risk assessment. In this view, a comprehensive
risk stratification, generated by integrating the prognostic weight of
pretreatment and posttreatment parameters (MRD),92 might help to
allocate the majority of patients to a more realistic category of risk,

Figure 3. Risk assessment combining pretreatment and post-treatment prog-
nosticators. Applying an adjusted risk stratification, combining genetics/cytogenet-
ics and level of MRD at the end of consolidation therapy, we distinguished 2
categories of patients: (1) low-risk, including F-RK and I-RK that were MRD-negative;
and (2) high-risk, including U-RK, FLT3-ITD cases, and F-RK/I-RK that were
MRD-positive. The first group stands for significantly longer OS (73% vs 17%), RFS
(58% vs 22%), and cumulative incidence of relapse (17% vs 77%; P � .001 for all
comparisons).
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thus favoring selection of more appropriate postremission strate-
gies. In the context of such an integrated approach, pretreatment
cytogenetic/genetic profile will dictate intensity and type of
induction therapy, whereas posttreatment MRD status helps modu-
lating intensity of postremission strategies, allowing a treatment
proportional to the individual risk of relapse to be delivered. The
final purpose is that patients will be assigned to ASCT not on the
basis of donor availability (donor vs no donor approach) but on the
basis of their adjusted (cytogenetic/genetic plus MRD) risk of
relapse (transplant vs no transplant approach). This will also
comply with the primary goal of saving additional lives, even
without any major advances in chemotherapy or transplant
technologies.17
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