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Abstract: Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes
in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its
occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML).
TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy,
particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional
chemotherapy and only a modest improvement in outcome with hypomethylation-based interven-
tions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response
that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and
enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date
there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body
of evidence indicating that p53 mutants differ in functionality and form from typical AML cases
and subsequently display inconsistent responses to therapy at the cellular level. Understanding this
pathobiological activity is imperative to the development of effective therapeutic strategies. This
review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic
system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need
for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation
in AML management.
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1. Introduction

The TP53 gene and its protein was first described in 1979 and has since taken center
stage due to an avalanche of research after mutations in this gene were identified as the
common denominator in more than 50% of human cancers. TP53 mutation associated
acute myeloid leukemia represents a distinct molecular cohort with a notorious reputation
for uniformly poor prognosis [1]. The TP53 mutation confers a resistant predisposition to
current therapeutics regardless of age. In comparison, CR in a non-TP53 mutated cohort
is around 80% [2–5]. A lower variant allele frequency (VAF) of the TP53 mutation is
associated with fewer chromosomal losses and a complex karyotype but does not confer a
better overall or event free survival to a higher allele frequency [6].

This poor outcome could be substantiated by the crucial role p53 imparts in mediating
apoptotic feedback to standard chemotherapy leading to inherent resistance in mutated
p53 [2,5,7–9].

Li-Fraumeni syndrome, a condition caused by a germline mutation in TP53 in humans
born with a single mutant allele of TP53, encompasses a wide variety of early onset cancers,
including AML in around 5% of Li Fraumeni related malignancies [10].

Somatic mutations in transcription factor TP53 represent one of the most frequently
mutated alterations in human cancers. These mutations are surprisingly observed in only
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5–10% of de novo AML but occur in about 25% of older patients with de novo AML
with a median age of 60–67 years [3]. In genomic, unstable AML, like t-AML therapy
related myelodysplastic syndrome(t-MDS), TP53 mutation is observed in 30–35% of cases.
However, in complex-karyotype AML TP53 is mutated in 70% of proportion. Therefore,
TP53 represents a powerful adverse indicator of poor prognosis independent of complex
karyotype, age and other genetic markers [11–15].

Broadly, TP53 is mutated in all morphological subtypes of the French American British
(FAB) classification but is more enriched in erythroleukemia (25–36%) [16,17].

The relative lower prevalence of somatic TP53 mutation in AML compared to solid
tumors like ovarian (48%), and colorectal (43%) suggests that other cooperating events are
necessary for leukemic progression [3].

2. TP53 Gene, p53 Structure and Cellular Functions

Normal (wild type, WT) p53 protein, which is encoded by the TP53 gene, is located
on chromosome 17p13.1. The p53 protein product is a 393 amino acid long phosphoprotein
which contains five important hallmark domains: the amino N-terminal transactivation do-
main, a central DNA-binding domain (DBD), a carboxy-terminal oligomerization domain,
and a regulatory domain. (Figure 1) [18]. P53 is known as the guardian of the genome
as its official function is to maintain harmony between cell arrest and cell growth during
genomic stress [19].

Figure 1. Functional domain of p53: The N-terminal portion consists of the transactivation domain (TA) and the proline
rich domain (PR). TA is required for transactivation of various transcription factors and interaction of MDM2 ubiquitin
ligase. The central core is mainly made of the DNA—binding domain (DBD); most of the exons of TP53 are sequenced. The
C—terminal consists of the oligomerization domain (OD) and the carboxy- terminal regulatory domain.

TP53 gene is largely a stress response protein with functions ranging from apoptosis
to cell cycle control. Therefore, a mutation in the TP53 gene pronounces the effects of
oncogenes leading to the uncontrolled proliferation of tumor cells. These mutations
are known to give rise to a deleterious gain of function (GOF), a loss of function (LOF)
or a non-mutational dysfunction or inactivation of the p53 protein [20–23]. There are
multiple pathways to p53 inactivation resulting in decreased p53 level and subsequent cell
proliferation. Half of the time this inactivation is a direct result of TP53 gene mutation in
one TP53 allele which eventually can lead to the loss or partial inactivation of the other
WT allele over time or during disease progression, owing to loss of heterozygosity (LOH).
LOH, in the context of somatic and germline mutation, is considered as a gene alteration
that further evolves to tumor progression [24–26].

p53 is normally ‘off’ with a short half-life and is tidily regulated at the protein level via
post-translational modifications including ubiquitination, phosphorylation, acetylation and
methylation [27–30]. It is activated when cells are stressed [31] or damaged avoiding further
proliferation of stressed cells through the G1/S phase of the cell cycle. The continuous
ubiquitylation and subsequent degradation allow the unstressed cell to maintain a low
level of WT p53. In contrast, p53 ubiquitylation is suppressed under hypoxic conditions, or
oncogene activation and DNA damage, leading to its accumulation. p53 is then stabilized
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in the nucleus in the form of tetrameric complexes and finally undergoes its activation. The
formation of tetramers is required for p53 to be fully active and serve as a transcriptional
activator of more than 150 target genes [26,32].

The fate of p53 protein in the cell is mainly determined by the rate of degradation
rather than the rate of production. p53 is primarily degraded by the interaction of p53 with
MDM2 (Double minute 2 Protein).

MDM2 is a ubiquitin E3 ligase that labels p53 with ubiquitin, resulting in p53 degrada-
tion by 26S proteasomes [33]. This interaction of p53/MDM2 can be disrupted when stress
or DNA damage is detected resulting in the stabilization of p53. Of note, an overexpression
of MDM2, which can be observed in many tumors, leads to the deactivation of p53 [26].

Interestingly, primary AML with WT TP53 can overexpress high levels of another
important regulator of p53 called MDM4 (also known as MDMX), through binding of p53
AT domain. This finding demonstrates the detrimental consequences of dysfunctional p53
pathways accompanied by inferior survival.

To the contrary, mutant p53 accumulates in tumor cells and is regulated and stabilized
by MDM2 in a manner similar to WT p53, which could be secondary to attainting a (GOF)
phenotype. Therefore, detection of increased levels of p53 by immunohistochemistry (IHC)
correlates with TP53 gene mutation as p53 expression is low in a normal cell [27–30].

The p53 network is activated primarily by three mechanisms which maintain an
increased concentration of p53 protein. This stabilization of higher concentrations of p53
allows for p53 binding to DNA sequences with ensuing transcription of adjacent genes,
ultimately resulting in inhibition of cell division or cell death. The first pathway is the
activation of kinases like ataxia telangiectasia related (ATR) and casein kinase II on exposure
to chemotherapeutic agents and ultraviolet light [34]. Secondly, an increased oncogene
expression such as that of Myc or Ras triggers growth signals resulting in the production of
p14ARF protein which consequently activates p53 by binding to MDM2 and inhibiting its
activity [35–37]. Lastly, major kinases like ATM (ataxia telangiectasia mutated) stimulate
Chk2 (Checkpoint kinase 2) when triggered by double strand breaks [37]. In summary,
significant DNA dependent protein kinases including ATM, Chk1, and Chk2 sense DNA
damage, phosphorylate p53 at the AT (amino terminal domain) sites close to the MDM2
binding region and consequently block MDM2 interaction with p53. The end result of this
cascade is the stabilization of p53. [38].

p53 encompasses around 18,000 mutations in different cancers. Unlike the majority of
the tumor suppressor variants which largely consist of truncation mutations, the predom-
inant p53 mutation in leukemia is a monoallelic missense mutation [39,40]. A missense
mutation is a point mutation in the DNA resulting in a single amino acid substitution
within the translated protein. This mutation produces a phenotype with increased ex-
pression of altered p53 protein, which accumulates in tumor cells contributing to tumor
initiation, promotion and chemoresistance [38]. The alternative mutations such as nonsense,
splice-site or insertion/deletions are observed in lower frequencies [39,41].

Monoallelic mutation gives rise to mutant p53 full-length protein which are detected
in tumors and usually mapped in the DBD affecting sequence specific DNA-binding
activity [24].

TP53 mutation in leukemia can occur in the context of somatic and germline mutations,
the latter of which is associated with Li-Fraumeni syndrome leads to the development of
specific solid tumors and is less likely to arise in diverse tissues [41]. In the sporadic setting,
however, TP53 mutations seem to occur when exposed to carcinogens (environmental fac-
tors), oncogenic agents or genotoxic insults. This observation further elucidates the robust
functionality of p53 in maintaining genomic stability and preventing tumor formation [3].

3. Role of TP53 in Hematopoiesis, Clonal Hematopoiesis and AML

During the development of an organism, each cell acquires a similar set of genes
and a template genetic sequence. Differentiation of cells into specific tissues and their
function is a byproduct of the activation or silencing of certain genes. With age or as a
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result of exposure to environmental mutagens, proliferating and differentiating cells may
procure somatic mutations. The effects of mutation are many including neutral effects
if the variant lies within a non-regulatory region, an increase in proliferation capacity or
negative selection against cells if contained within essential genes [42,43].

The hematopoietic system is a complex yet efficient entity responsible for producing
a multitude of cells daily. To meet these demands, hematopoietic stem cells (HSCs) have
a hierarchical methodology of self-renewal and division into progenitor cells. HSCs can
divide giving rise to a progenitor and another HSC or two progenitor cells which will
later divide and differentiate into mature cells. Progenitor cells have a limited self-renewal
potential. In these cells the acquisition of a mutation will usually end the clonal lineage.
However, in some cases a mutation can have a proliferative advantage leading to progenitor
cell proliferation. Occasionally, the slowly dividing HSCs may acquire mutations which
can influence the HSC compartment and daughter cells. These variants may lead to
proliferation and expansion of the HSC clone or one lineage of cells. This constitutes the
basis of clonal hematopoiesis (CH) [44–47].

An important role in the self-renewal and proliferation of normal HSCs is assigned to
the TP53 gene and p53 protein [48]. Under biologically functional TP53 HSC self-renewal is
decreased when exposed to DNA damaging radiation, oncogene activation and alkylating
agents. However, TP53 disruption leads to augmented proliferation and overproduction
of pluripotent stem cells [49–51]. This suggests that suppression of p53, or its pathway,
leads to outgrowth of pluripotent stem cells with subsequent malignant transformation of
hematopoietic stem/progenitor cells [52–54].

Early studies have shown p53 to be involved in apoptosis, proliferation and differentia-
tion of human HSCs and provides quiescence during steady states of hematopoiesis [55,56].
Intact p53 is integral to the function of bone marrow mesenchymal stromal cells (MSC). This
is evidenced by observations that mice with p53 deficient MSCs were unable to support
hematopoietic progenitors [57]. Functional p53 is known to contribute to HSC genetic
stability and homeostasis by reducing intracellular reactive oxygen species level [58]. In
murine HSCs with p53 loss and incorporation of mutant KrasG12D, there was a disposition
for indefinite self-renewal and the ability to transform into leukemia cells [51].

With modern techniques, it is now widely understood that aging is ubiquitously asso-
ciated with mutations and HSC expansion that can harbor mutations in leukemia specific
genes without associated hematologic malignancies or cytopenia, commonly referred to as
age related clonal hematopoiesis (ARCH) [59,60].

Clonal hematopoiesis of indeterminate potential (CHIP) in leukemia associated genes
including DNMT3A, ASXL1, TET2 with a variant allele frequency (VAF) of ≥2% can confer
a predisposition for hematological malignancy including overt leukemia, as well as throm-
bosis, stroke and cardiovascular events [61–64]. More recently, the utilization of targeted
deep sequencing techniques has allowed for the identification of VAFs of >0.5–1%, which
have been noted to be associated with an increased odds of AML development [60,63,65].
For this review we will refer to ARCH and CHIP as clonal hematopoiesis (CH)

TP53 somatic mutation is associated with aging, is present in 4% of CH and is believed
to play a vital role in CH development along with other associated gene mutations in
DNMT3A, TET2, ASXL1, SRSF2, CBL, and SF3B1. There is strong evidence that when the
TP53 mutation is present it represents a nearly initiating event and presents as a dominant
or founding clone in the development of leukemia whereas DNMT3A and TET2 mutations
are sustained over time with no overt association with AML development [11,66].

TP53 mutations are associated with CH development and there is convincing evidence
that mutated TP53 can lead to a permissive state of overt leukemia. These findings support
the perceived fitness advantage conferred by TP53 through enhancement of HSC self-
renewal in light of genotoxic stresses [47]. However, Trp53 mutation induced mouse
models exhibit no overt transformation to leukemia, enforcing the idea that Trp53 mutation
alone is not sufficient for a foolproof leukemia initiation, but rather multiple additional
steps are required [51,67].
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Serial acquisition of somatic mutations is known to be involved in the pathogenesis of
AML; nevertheless, more definitive studies are needed to address whether these mutations
are an initiating or cooperating event. This continues to be a challenge as one third of AML
patients harbor no mutations in known leukemia associated genes [68]. Hence, despite the
understanding of CH having an effect on survival, there are currently no data supporting
the screening of asymptomatic patients.

4. Functional Patterns of TP53 Mutations

In clinical settings, all TP53 mutations are viewed collectively, and therapeutic inter-
vention is not stratified by specific TP53 genotype. However, a plethora of research has
enabled us to understand various functional subgroups within p53. Understanding the
influence of various forms of TP53 mutations on the clinical characteristics of leukemia is
useful in grasping the underlying p53 biology and critical for the development of potent
targeted agents [69].

The changes in gene and subsequent protein functionality can be studied based on
mutation site in reference to the domain-based structure of p53 protein.

The three main functional regions of p53 protein are the amino terminal region, the cen-
trally situated DNA-binding domain and the oligomerization domain [70]. In AML, TP53
mutations were detected most frequently in the centrally situated DNA-binding domain,
followed by the amino terminal domain and the oligomerization domain [70]. The different
TP53 domains are distinct in functional activity and under normal circumstances all p53
mutants are inert and behave as LOF mutants. However, exposure to genotoxic stress can
have varied effects including GOF and dominant negative (DN) effects (Figure 1) [71,72].
The characterization of the three main functional domains is presented below.

4.1. Amino Terminal Domain Mutants (AT)

The AT domain of the TP53 gene spans through amino acid residues 1-61 and encodes
for a transcriptional activator which harbors the transactivation domains (TAD) 1 and 2
and a proline rich domain. Although, the explicit molecular function of TAD1 and TAD2
remains obscure, TAD1 is associated with the induction of a number of genes while TAD2
contributes to tumor suppression. Both TAD1 and TAD2 can independently transactivate
genes, however, at least one TAD is required for p53 transcription [73].

AT mutations within the first 40 amino acids are usually insertion or deletion variants
and result in the abrogation of full-length p53 expression [74]. The AT domain has several
significant regulatory regions, including MDM2. This oncoprotein is a cellular inhibitor
of p53 that can bind to the AT domain causing p53 degradation via ubiquitylation and
p300 binding resulting in p53 deactivation via acetylation. Some cancers can lead to the
amplification of MDM2 resulting in p53 inactivation and unopposed cell growth [75,76].

When a full length p53 formation is disrupted from mutations in the AT domain,
initiation of translation from an alternative codon expresses p47. This isoform of p53 is a
truncated 47 kDa protein and, when endogenously expressed, serves as a tumor suppressor
when p53 lacks TAD1 and TAD2 [77,78].

P47 can induce the expression of selective apoptotic genes and retains some transacti-
vation properties but is unable to encode for cell-cycle arrest genes such as CDKN1A [79,80].
P47 retains a selective apoptotic function despite a flawed G1/S cell cycle checkpoint. Nev-
ertheless, AT domain mutations are prognostically more favorable than p53 DBD mutations.

Hence, expression of high p47 or AT domain TP53 mutations have a better response to
therapy which translates into improved overall survival [81]. Theoretically, p47 expression
could be used as a biomarker to predict favorable response to therapy

4.2. DNA Binding Domain (DBD)

The centrally located DBD is the most frequently mutated (around 80%) region and
spans amino acids 100–200 within exons 5–8 (Figure 1). Mutations to this domain result in
the inability to transactivate multiple target genes leading to the functional inactivation
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of p53 and the loss of DNA binding capacity [71,82]. DBD carries six major mutational
hot spots including codons 175, 245, 248, 249, 273, and 282, showing a propensity for
arginine residues [83]. The most common hot spot DBD mutations reside in codon 175.
The first 42 amino acids at the N-terminal transactivation domain interact with the basal
transcriptional machinery serving as a positive regulator of gene expression [69].

As mentioned earlier and contrary to popular belief, mutations often cause various
functional defects at a cellular level and not solely LOF via loss of tumor suppressor activity
and mitigation of transcriptional activation of the p53 gene [84]. However, in general, DBD
mutants are usually LOF variants.

As evident in LFS and mouse models, one DBD mutant TP53 allele confers a predispo-
sition to spontaneous cancer development [85]. The distribution of hot spot residues in
germline and sporadic tumors are similar [86]. Thus, the loss or mutation of both TP53
alleles accentuates spontaneous tumor development raising the importance of gene dosage
and the enhanced oncogenic potential of the p53 missense mutation [71,87]. Generally, with
an underlying DBD mutant p53 allele tumorigenesis is accentuated in the presence of DNA
damaging agents. The resulting effects are similar to that of the null p53 allele (TP53 −/−)
with decreased transactivation of target genes and limited function of the WT p53 leading
mainly to loss of tumor suppression, apoptosis and DNA repair [88,89]. Consequently,
DBD mutations are distinguished by complete loss of transactivation potential [90,91], and
are resistant to various anticancer therapies resulting in a poor prognosis [77,92,93].

Usually, missense mutations can produce full length mutant p53 which is more stable
than WT and present at high levels in tumor cells [94]. These variants attain additional
features that inhibit the co-expression of the remaining WT protein encoded in the second
allele and are known to have DN effects that support oncogenesis and survival. Of
note, DN effects are expressed by the majority of the DBD mutants [29,69,95]. The DBD-
DN mutant has an inhibitory effect on the remaining WT p53 protein transgressing to a
lower canonical p53 functionality in comparison to LOH of the WT allele or TP53+/−
heterozygosity [69,71,96]. Data from multiple studies have concluded that DN effect
does not generally lead to tumorigenesis with loss of p53 function. DN is not usually
demonstrated at basal levels in mutant p53 protein expression but rather a higher DBD
mutant p53 to WT ratio of around 3:1 is required to contribute to tumorigenesis [97,98].
Exposure to DNA damaging agents including radiation and chemotherapy can increase
the DBD mutant ratio inducing DN effects by decreasing the WTp53. This implies that
therapeutic interventions that decreases mutant p53 could abrogate tumorigenesis in
malignancy with one DBD mutant allele [69,71,96].

Often, mutant p53 can initiate new functions independent of WT p53, conferring
gain-of-function (GOF) properties that propagate progression, metastasis, drug resistance
and survival. GOF capability is achieved by the binding of mutant p53 to the p63 and
p73 family of tumor suppressor genes resulting in functional alterations and inhibition of
these key transcription factors required for cell cycle arrest [24,88,99,100]. Furthermore,
mutant p53 binding to p73 protects cells from chemotherapeutic agents [101]. Thus, GOF
effects the ability of the mutant p53 to transactivate novel cell survival genes, [102] which
then leads cancer cells to become dependent on mutant p53 for tumorigenesis, [103,104]
while resisting cell death on exposure to DNA damaging agents [105]. DBD mutants do not
usually possess GOF characteristics, but when present, are commonly seen with mutations
in codon 175, 248 and 273 [69]. Hence, targeting the interaction between p53 and p63 and
p73 would constitute a promising strategy, thus restoring p73 activity could re-sensitize
the cancer cells to therapeutic agents [106]. The aforementioned phenotypic effects of DBD
mutations are not mutually exclusive.

4.3. Oligomerization Domain (OD)

The OD, which spans amino acid 325–356, is essential for tetramerization of p53, an
important event in tumor suppressor function. Recurrent hotspots with OD mutations are
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R337H, R342P, and R342. Mutation within the OD is rarely seen in sporadic cancer but
commonly encountered with germline mutations [107,108].

Usually, when a mutation affects tetramerization, it is known to diminish DNA
binding. Consequently, mutation confers complete or partial loss of transactivation and
loss of tumor suppression, thus functionally behaving like LOF p53 proteins [107,109].
Generally, patients with OD mutations lack a response to chemotherapeutic agents as they
rely on a p53 mediated cytotoxic effect [69].

In summary, the mutation of various p53 domains results in a spectrum of functional
consequences at a cellular level. Mutation in the AT domain is usually associated with
partial loss of transactivation potential with the ability to transactivate select genes.

DBD-LOF variants possess the ability to deliver partial transcriptional function leading
to cell death similar to OD mutants while lacking WT p53, while DBD-GOF mutants have
the worst functionality with increased cellular survival and metastasis in the p53 null
state. Hence, envisaging the different functional classes of the p53 mutant can drastically
improve outcomes if therapeutic approaches specific to p53 mutant subtype are adopted
(Figure 2) [69].

Figure 2. Classes of TP53 mutations and their functional implication. Amino-terminal (AT), Oligomer-
ization domain (OD), DNA-binding Domain (DBD), Loss of function (LOF), Double negative (DN),
Gain of function (GOF).

5. Co-occurring Mutations and Allelic States in TP53 AML

TP53 mutation resulting in loss or alteration of function is seen in approximately
8% of de novo AML. However, these genetic variants are present in 30% of t-AML cases
and in patients with complex karyotype, especially in the elderly, they are encountered
in around 70% of subjects. Nevertheless, prognosis and overall survival is poor in all
subgroups [110–113]. The 2017 European Leukemic Net (ELN) guidelines was updated
to include TP53 mutated leukemia as an unfavorable group. Overall survival for patients
with TP53 mutation and complex cytogenetics (i.e., ≥3 cytogenetic abnormalities) is worse
in comparison to TP53 WT and complex karyotype or TP53 mutated with no complex
cytogenetics [66].
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Presence of TP53 mutations as part of CHIP have been observed although mutations in
DNMT3A, TET2 and ASXL1 are more common compared to TP53 [59,61,63,114]. Desai et al.
evaluated the presence of mutated TP53 in a normal population through prospective study,
subjects that harbored a detectable VAF of 1% or more in TP53 or IDH1/2 mutation
eventually developed AML. RUNX1 had the shortest latency to develop AML (1.5 years vs.
9.6 years without mutation). Of note, the RUNX1 study was limited by small sample size
(only 3 patients), hence more studies are needed to validate this finding. Other mutations
with increased odds of developing AML included DNMT3A, TET2, and spliceosome-
related genes SRSF2, SF3B1 and U2AF1 [63]. Although, a part of CH it should be noted
that a VAF of ≥10% in DNMT3A and TET2 were at increased risk for AML whilst a lower
VAF (<10%) was less specific to AML. However, this was not the case with TP53 and IDH
mutations, wherein the odds to develop AML was independent of VAF [63].

Mutated TP53 and PPM1D clones were strongly enriched during and after induction
chemotherapy. This finding does not necessarily represent the initiation of these mutations
but is rather considered to be secondary to preferential expansion of candidate mutations
that were present in small frequencies prior to cytotoxic chemotherapy [11,115].

TP53 mutation is commonly associated with complex karyotype, chromothripsis,
chromosomal arm losses (especially 5, 7, 17), cytogenetic alterations to copy number
(aneuploidy) or some combination of these features [12,66,116]. Usually, TP53 mutations
are not associated with low risk aberrations like t (8:21) or inv 16 [12]. An analysis of 40 AML
patients demonstrated that copy number alterations with TP53 mutations were associated
with trisomy of chromosome 8, gain of chromosome 17 (11.2), 14 (q32.3), 16p (11.2–11.3) and
deletion of chromosome 12 (p12.3) [13,117]. Although the mechanism of leukemogenesis
in TP53 mutated AML is unknown, the frequent observation of chromosome 5, 7 and
17 aneuploidy with mutated TP53 advocate for their involvement in the transition from
CHIP to AML [115].

TP53 mutations are less often linked with alterations in the RAS pathway (4%), FLT3
(6%) or NPM1 (8%), [4,112] and to a lesser frequency can co-exist with single nucleotide
variants in recurrent AML genes like TET2, IDH1/2 and DNMT3A [12,13,66,112,116]. A
different pattern of co-mutations may be observed within a founding clone compared to a
subclone with TP53 mutation. If associated with a founding clone, TP53 mutation usually
coexists with transcription factors (RUNX1, CEBPA, NPM1) or epigenetic genes (DNMT3A,
TET2, IDH1/2) or can be seen as a subclone in the process of clonal evolution triggered
by a poly comb pathway of SF3B1, SRSF2 or a signaling mechanism involving JAK2, RAS,
FLT3, PTPN11, or BCOR [59,61,114].

Recent studies have shown the importance of VAF to prognosticate the role of sub-
clonal TP53 mutation in AML. In the study TP53 mutations were divided by their VAF into
subgroups of >40%, 20–40%, and <20%. VAF of <20%, although considered sub-clonal, had
a negative impact on overall survival (OS), complete remission rate and event free survival
rates. However, a lower VAF was associated with fewer chromosomal losses and complex
karyotype [118]. Similar results were validated with myelodysplasia and secondary AML
patients, where in VAF <20% was associated with improved OS compared to VAF >40%
which predicted complex karyotype and worse OS [119,120]. TP53 can be associated with
diploid cytogenetics but usually the VAF is lower compared to non-diploid cytogenetics.

Short et al. further validated these findings by demonstrating that AML with mutated
TP53 VAF of >40% was independently correlated with worse relapse free survival and
OS [121].

Furthermore, Sallman et al. describe the striking relationship between an increase
in VAF% and worsening karyotype complexity, which again correlated with worsening
OS [119].

About 20% of patients with del 5q have TP53 mutation clonal evolution, which is
generally associated with resistance to lenalidomide and transformation to AML. As per
the world health organization (W) 2016, monitoring for the appearance of clonal evolution
or increase in the clone of TP53 predicts disease progression [122–125].
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The extent of TP53 genome instability varies depending on whether it is a monoallelic
TP53 hit per single gene mutation or biallelic/multiple hits. Rate of transformation to
AML from MDS and overall survival was worse with multiple TP53 hits in comparison to
monoallelic TP53 hits- which was very similar to the TP53 WT [126].

6. Current Standard Therapeutic Concepts

Therapy with standard chemotherapy in TP53 mutated AML with loss of TP53 allele
displays a lack of chemotherapy induced apoptosis and subsequently a poor response
rate (RR), disease-free survival (DFS) and OS while being independent of cytogenetic
aberration [5] Decitabine (DAC) has been shown to enhance chemotherapy response in
patients harboring TP53 mutations, however, it has not been able to deliver a durable
response or clear subclones of TP53 mutations [127,128]. Nevertheless, a higher response
was noted in AML patients with TP53 mutations compared to WT TP53 (100 vs. 41%) [127].
The underlying mechanism responsible for the sensitivity of TP53 AML to DAC is currently
uncertain. TP53-mutated AML patients receiving a monthly regimen of 5-day DAC had an
overall response rate of 62% [12].

Short et al. assessed the efficacy of a 5-day DAC schedule compared to a 10-day
regimen in a randomized phase II, open label, single center trial. There was no difference in
outcome between the two DAC schedules for those with TP53 mutated status. Intriguingly,
response rate did not differ depending on baseline VAF. Four patients had a VAF ≥20% at
the time of remission suggesting the presence of TP53 mutation preleukemic clones rather
than solely myeloblasts. The two patients that had the longest remission duration had
no detectable TP53 mutations present in the remission bone marrow sample [129]. It is
widely understood that dominant clone TP53 mutations have poor outcomes but recently
sub-clones were noted to have equally poor outcomes [118].

TP53 mutated cells are more sensitive to hypomethylating agents in comparison to
cytotoxic agents, providing the impetus for a combination with bcl-2 inhibitor- Veneto-
clax (VEN) AML study. In patients harboring TP53 mutations, the complete response
(CR) + complete remission with incomplete blood count recovery (CRi) rate was 47%
while the median OS was 7.2 months. Compared to historical standards of 28% CR rates,
the combination displayed promising efficacy. VEN mediated apoptosis appeared TP53
independent [130–133].

One of the primary and adaptive forms of resistance to VEN-based combination
therapy is activated bi-allelic TP53 perturbation. Hence, on disrupting TP53 function
within an AML cell line by using CRISPR/Cas9, DiNardo et al. were able to demonstrate
an association between TP53 loss and resistance to VEN, hypomethylating agent (HMA)
and cytarabine (ARA-C) as a single agent or in combination [134]. Similarly, preclinical
studies in leukemic cell lines have displayed an association between VEN resistance and a
faulty apoptotic pathway involving TP53 and BAX [135,136].

Allo-SCT with TP53 mutation and complex cytogenetics portend inferior OS in pa-
tients with MDS. However, outcomes in patients with complex cytogenetics and WT
TP53 are not poor, solidifying the fact TP53 mutation is a critical driver for poor overall
survival [137].

7. Newer Molecularly Targeted Therapies

Relapses and primary resistance still occur in TP53 mutated AML, necessitating the
dire need for newer therapeutic options. The primary objective of newer therapies is to
restore normal TP53 function by either degrading or inactivating mutant p53 or reviving
WT p53. (Tables 1 and 2).



Int. J. Mol. Sci. 2021, 22, 10782 10 of 18

Table 1. Clinical trials to restore wild type function of p53.

Target Clinical Trial Number Antineoplastic
Combination Compound Phase (Status)

MDM2 NCT01773408 ARA-C Idasanutlin/Cometinib I/IB (Completed)

NCT02098967 Alone or AZA Milademetan I (Completed)

NCT02545283 ARA-C AMG-232 III (Recruiting)

NCT03671564 DAC HDM201 I (Recruiting)

NCT02319369 Alone or AZA DS-3032b/Milademetan I (Recruiting)

NCT03634228 Ara-Ca I/II (Recruiting)

NCT03041688 DAC AMG-232 IB (Recruiting)

NCT02143635 HDM201 I (Recruiting)

MDM2 & BCL2 NCT02670044 Dasanutlin/VEN IB/II (Recruiting)

MDM2 & MDMX NCT02909972 Alone or AZA ALRN-6924 I (Recruiting)

Table 2. Clinical trials to degrade mutant p53.

Target Clinical Trial Number Antineoplastic
Combination Compound Phase (Status)

Mutant TP53 NCT03072043 AZA APR-246/PRIMA-1Met IB/II (Recruiting)

Several targets NCT03381781 DAC Arsenic Trioxide II (Recruiting)

HMG-CoAreductase NCT03560882 Atorvastatin/Lipitor I (Recruiting)

7.1. Mutant TP53 Inhibitor-APR-456

For the longest time TP53 was considered undruggable. Eprenetapopt (APR-246),
a PRIMA-1 analog, is a novel, first-in-class, small molecule therapeutic agent that binds
covalently to cysteine residues in mutant p53 protein and induces a conformational shift to
a WT-like structure.

This enables p53 binding to a specific DNA sequence leading to reactivation of pro-
apoptotic function by enhancement of target gene transcription [138,139]. APR-246 has
activity in cells without detectable TP53 expression and in WT TP53 cells by inducing
heightened oxidative stress resulting in cell apoptosis [140] Due to a synergistic effect with
azacytidine (AZA) in preclinical AML models, Eprenetapopt is being tested in a phase
1b/2 study in the treatment of naïve high risk myelodysplastic syndrome (HR-MDS) and
oligoblastic (20–30% blasts) AML patients. Higher response rates were noted in patients
with >10% p53 positivity by IHC and isolated TP53 mutation. Median duration of response
was 6.5 months and median time to response was 2 months. Of the 45 patients evaluated,
overall response rate was 88% and 53% achieved CR [141].

A European phase 2 study with a similar cohort of HR-MDS and AML showed an
overall response rate of 75% and CR of 56% [142]. TP53 VAF clearance correlated with CR
in both the studies. On the basis of these encouraging results, APR246 received fast track
and orphan drug designation from FDA in April 2020. Results of the randomized phase
3 study of APR-246 and AZA compared to azacytidine alone (NCT03745716) is awaiting
full report.

APR346 is being investigated in a phase I study in combination with AZA/VEN
for newly diagnosed TP53 mutated myeloid malignancies (NCT04214860) and being as-
sessed in combination with azacitidine following allo-SCT as maintenance therapy in TP53
mutated AML/MDS (NCT03931291).

APR-548, an orally bioavailable derivative of APR-246, is currently being developed to
be used in a phase 1 study with AZA in TP53 mutated MDS (NCT04638309). The synergy
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observed between APR-246 and AZA is hypothesized to be related to down regulation of
FLT3 pathway [143].

7.2. MDM2 Inhibitors

p53 pathway dysfunction is highly prevalent in acute myeloid leukemia independent
of TP53 mutational status [31] MDM2 and MDM4 are negative regulators of TP53 activity,
targeting degradation via ubiquitination. In AML, MDM2 is often overexpressed, hence
cells may have low functional TP53 activity without TP53 deletion/mutation. Nutlin-3a is
a small molecular inhibitor of the MDM2/p53 interaction, thus this therapeutic provides
increased p53 levels secondary to reduced p53 destruction, consequently upregulating
apoptosis [144].

RG7388/idasanutlin is an orally bioavailable MDM2 inhibitor which was investigated
in the placebo controlled, double blind phase III MIRROS study in combination with
cytarabine in the management of relapsed refractory (r/r) AML. Unfortunately, the study
had to terminate early as it did not meet primary end point of improved survival in
comparison to ARA-C alone [145]. TP53 stabilization, cell cycle arrest and apoptosis were
produced in a dose dependent fashion [146]. TP53 mutational status alone did not correlate
with CR, although increased expression of MDM2 among HSPC and leukemia blasts was
consistent with CR [147,148].

Idasanutlin is currently in clinical trials in combination with Venetoclax in r/r AML
(NCT02670044 and NCT04029688). The preliminary results were presented at the 2019
American Society of Hematology annual meeting, and the CR/Cri was reported in 11 of
49 patients [149]. It is in clinical trials for newly diagnosed AML in combination with
cytarabine and daunorubicin based induction regimen (NCT03850535).

AMG 232 is a structurally distinct MDM2 inhibitor and interacts with the glycine
self-region of the TP53 binding pocket on the surface of MDM2 [150]. AMG 232 is being
investigated in r/r AML treatment.

Of the 30 patients evaluated, four achieved a morphological leukemia-free state.
Unfortunately, no response was noted in patients with TP53 mutations.

AML possesses high expression of MDMX. Current MDMD2 inhibitors provide a
limited effect on other members of the MDM family, including MDMX, which decreases
their utility in AML treatment [151]. ALRN-6924 is a stapled peptide with dual inhibition
of MDM2/MDM4. Phase I clinical trials utilizing MDM2/MDMX inhibitors in r/r AML
and MDS are underway [151–153].

7.3. Immunotherapy and Other Agents

Cell surface CD47 interacts with its corresponding receptor on macrophages to inhibit
the phagocytosis of normal, healthy cells. CD47 seems to be over expressed in myeloid
malignancies, and overexpression of CD47 in myeloid leukemia increases its pathogenicity
by allowing for tumor evasion of macrophages. Inhibition of CD47 induces engulfment of
leukemic cells [154]. Magrolimab, a CD47 inhibitor, was investigated in a phase 1b study
either as single agent in r/r AML or in combination with azacitidine in newly diagnosed
AML. Combined Magrolimab and AZA was assessed in the treatment TP53 mutated AML
patients (n = 9) resulting in a CR/Cri of 78% and 44%, respectively and negative MRD
in 57% of the responders, with a median follow up of 6.9 months. Median duration and
survival were not reached [155].

Arsenic trioxide has been shown to inactivate TP53 via 26S proteasome and upregu-
late WT TP53 functions, thereby inactivating proliferating leukemia cells and promoting
apoptosis [156,157]. Furthermore, atorvastatin (statin), a cholesterol lowering drug, was
recently investigated as an inducer of the degradation of misfolded or conformational
mutant TP53 with minimal effects on WT p53 and DNA contact mutants [158].
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8. Conclusions

There is growing evidence of age-related mutations and CH in the HSC and the
influence of TP53 on normal HSC self-renewal. The impact of TP53 mutations on CH is
indisputable. Improved characterization of the role of TP53 in normal hematopoiesis will
lead to a more complete understanding of TP53 mutations in the propagation of CH and
leukemogenesis. Pathways leading to TP53 dysregulation represent a common element in
non-TP53 mutated AML, hence leveraging WT TP53 in unmutated AML serves as a corner
stone in the design of anti-AML therapeutic strategies.

Recently, it has become understood that unaltered TP53 and mutated TP53 within
tumor cells can be therapeutically targeted, which has led to the use of novel therapies like,
APR-456 which has reported to restore transcriptional activity in mutant p53 or unfolded
WT p53, leading to apoptosis or the promising result of anti CD47monoclonal antibody
magrolimab in TP53 mutated AML.

This approach is of great precedence, as TP53 mutations in AML are distinctive, although
rare, and confer dismal responses to chemotherapeutic agents with very poor outcomes.

Hence, research focused on the exploitation of TP53 pathway activators may yield
immense contributions to the management of AML, a pathology associated with a very
high risk of therapy failure.
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