
Molecular Genetics of
Pediatric Acute Myeloid

Leukemia
Bryan Krock, PhD, Matthew J. Oberley, MD, PhD*
KEYWORDS

� Acute myeloid leukemia � Pediatric oncology � Molecular genetics � Rearrangement
� Next-generation sequencing

KEY POINTS

� Pediatric acute myeloid leukemia (AML) has drivers that are unique to both infants and
children as well as drivers found in common with adult AML.

� Genetic profiling of pediatric acute myeloid leukemia can identify drivers that are diag-
nostic, prognostic, or predictive in a large majority of patients.

� Profiling of pediatric megakaryoblastic leukemia identifies genetic alterations associated
with a wide range of patient outcomes.
INTRODUCTION

Acute myeloid leukemia (AML) is a biologically and genetically heterogeneous malig-
nancy that accounts for approximately 20% of pediatric acute leukemias.1 With the
development of optimized therapeutic regimens and allogeneic hematopoietic stem
cell transplantation, overall survival rates of pediatric AML have approached 70%
but still significantly lower than that of pediatric acute lymphoblastic leukemia
(ALL).2 As with other hematological malignancies, pediatric AML has been evolving
from a morphologic classification scheme to a genetically based one, aided by the
rapid progression of molecular detection methods, such as next-generation
sequencing (NGS).
The World Health Organization (WHO) currently recognizes several types of AML

with recurrent genetic abnormalities, the extent of which is certain to grow with the ex-
plosion of genomic profiling studies in recent years. Although many of the recurrent
genetic drivers of myeloid leukemia are found in common between pediatric and adult
patients, the prevalence and clinical significance of these drivers differ depending on
the age of the patient.
Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ, USA
* Corresponding author.
E-mail address: moberley@carisls.com

Clin Lab Med 41 (2021) 497–515
https://doi.org/10.1016/j.cll.2021.03.014 labmed.theclinics.com
0272-2712/21/ª 2021 Elsevier Inc. All rights reserved.

Downloaded for Anonymous User (n/a) at University of Health Sciences from ClinicalKey.com by Elsevier on December 26, 
2021. For personal use only. No other uses without permission. Copyright ©2021. Elsevier Inc. All rights reserved.

mailto:moberley@carisls.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cll.2021.03.014&domain=pdf
https://doi.org/10.1016/j.cll.2021.03.014
http://labmed.theclinics.com


Krock & Oberley498

Down
AML often is defined by the presence of recurrent chromosomal rearrangements
that create chimeric fusion genes that promote AML development and progression.
These fusions are diagnostic, prognostic, and, in some cases, predictive biomarkers
that drive clinical management. These so-called class II alterations often involve tran-
scription factors that serve to block differentiation of hematopoietic progenitor cells,
which subsequently acquire cooperating mutations in other pathways, often tyrosine
kinase or RAS, which are progrowth pathway mutations (class I mutations).3

This review focuses on genetic variants found in AML that are most germane to clin-
ical management of pediatric patients, while acknowledging that variants found more
commonly in adults still can be found in pediatric patients.

DISCUSSION
Classes of Genomic Variation in Pediatric Acute Myeloid Leukemia

NGS has enabled the description of all classes of somatic genomic variation in a single
tumor. These studies can reveal the underlyingmutational processes thatmanifest as a
particular mutational signature and can facilitate the understanding of the natural his-
tory of a given tumor. The Children’s Oncology Group–National Cancer Institute Ther-
apeutically Applicable Research to Generate Effective Treatments AML initiative has
characterized the genomes of approximately 1000 pediatric AML cases using whole-
genome, transcriptome, and epigenetic profiling, providing themost extensive charac-
terization of pediatric AML to date.4 This study and others have begun to reveal both
similarities and differences between adult and pediatric AML.
Although adult AML is defined by a low tumor mutational burden, all subtypes of pe-

diatric AML have an even lower rate of somatic mutations, averaging less than 1 so-
matic mutation per megabase of genomic sequence.4–6 Tumor mutational burden is
lowest in infants and increases with age of onset.4 Genes affected by somatic muta-
tions are diverse, but there are few recurrent somatic mutations, with only 5 genes
harboring mutations in more than 5% of subjects (FLT3, NPM1, WT1, CEBPA, and
KIT).4 This contrasts with somatic variants in adult AML, where alterations TP53,
DNMT3, IDH1, and IDH2 are common, although they are rare in children.4–6 In contrast
to somatic sequence variants, pediatric AML exhibits a higher rate of chromosomal
rearrangements than observed in adult AML, with rearrangements involving RUNX1,
CBFB, and KMT2A alone found in more than 35% of subjects.7 The prevalence of
structural rearrangements is highest in infants and decreases with age of onset4

(Table 1). Although most recurrent rearrangements are observed in both adult and pe-
diatric AML, there are several that appear with much higher prevalence or are even
unique to pediatric subjects, discussed later.
As with sequence variants, copy number variation is low across most subtypes of

pediatric AML, with approximately a third of cases exhibiting no identifiable copy num-
ber losses or gains.8 Many of the identified copy number variants are the result of focal
microdeletions and amplifications that frequently occur near the breakpoints of chro-
mosomal rearrangements and display a similar age-dependent distribution to struc-
tural rearrangements.4,8–10 Recurrent focal codeletions of MBNL1 and ZEB2 and
deletions of ELF1 have been reported, although their clinical significance has yet to
be demonstrated.4 Similarly, copy neutral loss of heterozygosity is identified at a
much lower rate in pediatric AML than other malignancies and was identified in
13% of AML cases. Copy neutral loss of heterozygosity typically has been observed
in genomic regions with known molecular drivers and tumor suppressors, such as
FLT3 internal tandem duplications (FLT3-ITDs) and CDKN2A/B.8 In contrast to most
forms of pediatric AML, acute megakaryoblastic leukemia (AMKL) exhibits a higher
rate of copy number variants.8,11
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Table 1
Common structural rearrangements and sequence variants identified in pediatric acute
myeloid leukemia patients

Genetic
Alteration Frequency Subgroup

Prognostic
Implication

Cooperating
Mutations

KMT2A
rearrangements

20% Infants (60%) Neutral; partner
imparts influence

NRAS, KRAS, FLT3

RUNX1-RUNX1T1 15% Children Favorable KIT, NRAS, KRAS,
FLT3, chromatin
modifying genes,
cohesins

CBFB-MYH11 10%–15% Children Favorable KIT, NRAS,
KRAS, FLT3

NUP98
rearrangements

6%–10% Children Poor FLT3-ITD, WT1

PML-RARA 5%–10% Older children Favorable FLT3-ITD, WT1

DEK-NUP214 <2% Older children Poor FLT3-ITD (70%)

ETS
rearrangement

1% Infants Poor Few

CEBPA 4%–9% Older children Favorable GATA2, FLT3, CSF3R

NPM1 4% Older children Favorable FLT3-ITD

FLT3 30% Children,
older children

Poor (FLT3 alone
is intermediate
among
FLT3-ITD group)

NPM1, WT1,
NUP98-NSD1

FLT3-ITD, NPM1 — — Most favorable
among FLT3-ITDs

—

FLT3-ITD, WT1 — — Poor among
FLT3-ITDs

—

FLT3-ITD,
NUP98-NSD1

— — Poor among
FLT3-ITDs

—

RUNX1 Mutation 3% (AML) Older children,
AMKL (10%)

Poor (AML),
excellent (AMKL)

JAK, cohesins
(AMKL)

CBFA2T3-GLIS2 15%–20%
(AMKL)

AMKL Poor Few

HOX gene
rearrangement

15%
(AMKL)

AMKL Favorable MPL

RBM15-MKL1 10%
(AMKL)

AMKL Favorable Few

NUP98-KDM5A 12%
(AMKL)

AMKL Poor RB1
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World Health Organization Recurrent Genetic Abnormalities in Acute Myeloid
Leukemia and Common Co-occurring Mutations

KMT2A rearrangement
KMT2A (also known as mixed lineage leukemia [MLL]) is the most commonly rear-
ranged gene in both adult and pediatric leukemias.12,13 It is most prevalent in pediatric
AML, where it is observed with greatest frequency in infancy.14,15 The KMT2A gene
encodes a lysine methyltransferase that mediates methylation of histone 3 lysine 4.
KMT2A translocations involve a large number of partner genes and typically involve
the N-terminus of KMT2A fused to the C-terminus of its partner gene, with more
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than 90 reported to date.13 Despite the large number of partners, KMT2A partners
most commonly are part of the AF4/FMR2 family, which function in the superelonga-
tion complex, and KMT2A fusions are thought to drive inappropriate expression of
KMT2A target genes, notably HOX genes.12 Despite this complexity, approximately
70% of pediatric AML KMT2A rearrangements are with 4 partners. The KMT2A-
MLLT3 (t[9;11] [p21;q23]) fusion is the most common (43%), followed by KMT2A-
MLLT10 (t[10;11]p12;q23); 13%), KMT2A-AFDN (t[6;11] [q27;123]; 5%), and
KMT2A- MLLT1(t[11;19] [q23;p13]; 8%).16

AML with KMT2A-MLLT3 rearrangement is given its own category in the WHO diag-
nostic classification system because it is the most clinically homogeneous, whereas
other rearrangements of KMT2A are diagnosed as AML, not otherwise specified.17

The KMT2A fusion partner is relevant for prognosis, because KMT2A-MLLT11
(t[1;11] [q21;q23]) has a better prognosis whereas KMT2A-AFDN, KMT2A-ABI
(t[10;11] [p11.2;q23] and KMT2A-AFF1 (t[4;11] [q21;q23]) have a poor prognosis.18

Consistent with the typical very young age of onset, pediatric patients with KMT2A
fusions had fewer somatic mutations than tumors without these fusions.4 Cooperating
somatic mutations, when present, are recurrent in NRAS, KRAS, and FLT3, whereas
GATA2 and CEBPAmutations typically are not found. The identification of cooperating
mutations in KMT2A-MLLT3 tumors has been associated with a negative prognostic
impact, although further study is needed to confirm this association.19 In addition,
deletion of MBNL1 and ZEB2 show frequent co-occurrence.4

Given the significant diversity of KMT2A rearrangement partners, their rarity and the
heterogeneous outcomes associated with them, it will continue to be a challenge to
integrate risk stratification of these uncommon drivers in clinical practice. When
KMT2A rearranged AML is examined morphologically and immunophenotypically,
they commonly have a monoblastic phenotype.

Nucleoporin 98kD rearranged
Nucleoporin 98kD (NUP98) rearrangements are relatively common in pediatric AML
(6%–10%) and much rarer in adult disease (1%–2%).20–22 They typically involve the
fusion of the NUP98 N-terminus to the C-terminus of at least 31 different partner
genes, with the t(5;11) (q35;p15) (NSD1) and t(11;15) (p15;q35) (KMT5A) rearrange-
ments preferentially found in pediatric AML.23 Most NUP98 rearrangements are not
detectible by conventional cytogenetics and require an RNA sequencing approach
on a practical basis. NUP98 encodes a structural component of the nuclear pore com-
plex, but more recent data indicate that the N-terminus can act as a transcriptional
activator through the recruitment of the chromatin modifying complexes.24–26

NUP98 rearrangements are associated with a poor prognosis and often are identified
with FLT3-ITDs and WT1 cooperating mutations.20,27 NUP98-KDM5A is preferentially
identified in pediatric AMKL, found in approximately 10% of pediatric cases, and char-
acteristically have RB1 mutations that decrease protein expression.11

The DEK-NUP214 fusion is the result of t(6;9) (p23;q34.1) and is a relatively rare diag-
nosis in pediatric AML (<2%).28,29 This rearrangement typically is associated with older
age of onset and basophilia, and outcomes are poor, with high rates of relapse and
lower rates of remission.15,29 FLT3 mutations are common in DEK-NUP214 cases,
with FLT3-ITD mutations found in up to 70% of pediatric cases, although the presence
of FLT3-ITD mutations do not significantly influence outcomes.29,30

ETS rearranged
The recurrent t(7;12) (q36;p13) rearrangement is rare in all pediatric AML cases
(approximately 1%) but is more common in infants with AML and is associated with
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poor clinical outcomes.4,31 This rearrangement juxtaposes the MNX1 gene with ETV6,
but there is debate as to the molecular mechanism by which this alteration drives
oncogenesis, because the chimeric MNX1-ETV6 transcript not always is detected in
tumors with the chromosomal rearrangement and a fusion protein has not been iden-
tified. Oncogenesis likely is mediated, at least in part, by MNX1 overexpression, and a
recent study showed MNX1 overexpression could impair hematopoietic differentia-
tion.32 Genomic landscaping studies have reported only a small number of cases,
and recurrent cooperating somatic mutation have not been cataloged. Other rare pe-
diatric rearrangements from the ETS family include ERG rearrangements.4

Core binding factor rearranged
Core binding factor (CBF) leukemias drivers fusions include RUNX1-RUNX1T1 t(8;21)
(q22;q22) and CBFB-MYH11 inv(16) (p13q22), which commonly are found in pediatric
AML cases (20%–30%).4,15,33 The RUNX1 and CBFB genes are transcription factors
that heterodimerize to bind DNA and recruit transcription factors that regulate hema-
topoiesis.34 The resulting fusion products block myeloid differentiation through tran-
scriptional repression. These fusions are associated with favorable outcomes, with
90% of patients achieving complete remission with chemotherapy and 70% overall
survival, although approximately 30% of patients relapse.15,33,35,36 The incidence of
CBF rearrangements peaks in older children, and when controlled for age, have a
higher mutational burden than expected for their age.4 Often considered similar en-
tities, CBFB-MYH11 and RUNX1-RUNX1T1 rearranged leukemias exhibit divergent
patterns of cooperating mutations. Although both commonly exhibit mutations in
NRAS, KIT, FLT3, and KRAS, RUNX1-RUNX1T1 cases display a dramatic enhance-
ment of mutations in chromatin modifying genes and the cohesion complex compared
with CBFB-MY11 cases.37 The presence of cooperating mutations does not appear to
influence outcomes in CBF rearranged AML.
Somatic mutations in the KIT receptor tyrosine kinase are common alterations in pe-

diatric AML, found in approximately 12% of all pediatric AML cases. They are signif-
icantly enriched in CBF-rearranged AML, where they are found in up to 36% of cases.4

Cooperating KIT mutations are associated with poor outcomes in adult CBF AML, but
prognostic significance has been less clear in pediatric patients. Recent studies indi-
cate exon 17, but not exon 8 KIT, mutations may impart a poor prognosis.38–41 CBFB
fusion-positive myeloid blasts often show a myelomonocytic phenotype and marrows
of affected patient typically have abnormal eosinophils with basophilic granules.

Other key rearrangements
Acute promyelocytic leukemia (APL) represents approximately 5% to 10% of pediatric
AML cases and is defined by the PML-RARA fusion, typically through the balanced
translocation t(15;17) (q24.1;q21.2).14 Rare cases, however, exhibit the clinical and
morphologic features of APL without t(15;17), and these patients may have a cryptic
PML-RARA rearrangement or a rare variant RARA translocations.42 Importantly, the
variants ZBTB16-RARA and STAT5B-RARA exhibit resistance to all-trans retinoic
acid.42 The incidence of this diagnosis is low in infants, increases in childhood, and
peaks in adolescents and young adults. Morphologically, both hypergranular and
hypogranular variants exist without apparent correlation to the underlying RARA fusion
variant.

CBFA2T3-GLIS2. CBFA2T3-GLIS2 rearrangements, typically the result of a cryptic
inversion inv(16) (p13.3q24.3), are identified nearly exclusively in pediatric patients
less than 3 years of age.43 They originally were identified in AMKL, where it is found
in 20% to 30% of pediatric AMKL and associated with a dismal outcome.44
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Subsequently, this fusion has been shown to be enriched in AML with normal cytoge-
netics but also has been detected as a rare rearrangement in AML with other cytoge-
netic findings; regardless of the morphologic subtype, this fusion has been associated
with adverse outcomes.11,43,45 Few cooperating mutations are identified in CBFA2T3-
GLIS2–positive malignancies, and, interestingly, forced expression of this fusion in
cord blood stem cells was sufficient to drive malignant transformation.45 Importantly,
conventional cytogenetics often fails to identify this rearrangement, placing patients in
a standard risk category, so appropriate molecular methods are essential to identify
this important lesion. CBFA2T3-GLIS2 leukemias have a distinct immunophenotype,
known as the RAM phenotype, with high expression of CD56 with absent to dim
expression of HLA-DR, CD38, and CD45. Recent data suggest this phenotype alone
may be sufficient to identify CBFA2T3-GLIS2–positive cases.45

RBM15-MKL1. The RBM15-MKL1 fusion caused by t(1;22) (p13.3;q13.1) typically is
identified in young children and is the second most common structural rearrangement
in neonatal leukemias.46 This leukemia commonly has a megakaryoblastic phenotype,
accounting for 10% of pediatric AMKL, and can present as a myeloid sarcoma that is
CD45 and CD34 negative, which canmake diagnosis difficult and easy to mistake for a
poorly differentiated tumor of another lineage. RBM15-MKL1 is associated with a
favorable prognosis among pediatric AMKL cases.11,46

KAT6A-CREBBP. The KAT6A-CREBB fusion caused by t(8;16) (p11.2;p13.3) is a rare
finding in pediatric AML, occurring in less than 1% of cases. This leukemia generally
has a monocytic or myelomonocytic phenotype. It occurs most commonly in infants
and is congenital in approximately 25% of cases.47 This diagnosis generally is asso-
ciated with poor outcome, although paradoxically, some neonatal patients experience
spontaneous remission.47–50

Acute Myeloid Leukemia with Normal Cytogenetics

Cytogenetically normal AML is significantly less common in pediatric AML (15%–25%)
compared with adult AML (40%–47%) and is associated with an intermediate prog-
nosis.51,52 Significant heterogeneity has been noted within this group, likely due to
the diversity of subtypes represented herein, and prognosis is altered with identifica-
tion of cryptic rearrangements, such as NUP98-NSD1, NUP98-KDM5A, or specific so-
matic mutations, such as variants in NPM1, CEBPA, RUNX1, FLT3, and RAS pathway
genes. Those without FLT3-ITDs have favorable prognosis. Younger patients with a
normal karyotype and no FLT3-ITDs have a prognosis comparable to that of patients
with CBF AML.53

NPM1 mutations
Somaticmutations in the last exon of theNPM1gene are found in 2% to 8%of pediatric
AML, significantly rarer than adult AML.54,55 These mutations, often frameshift inser-
tions and deletions at the far C-terminus, result in NPM1 mislocalization through the
removal of 1 or 2 nuclear localization sequences and the creation of a nuclear export
signal.56,57 Patients with NPM1 mutations have a favorable prognosis and typically
have a normal karyotype.54 Coexistent FLT3-ITD mutations are frequent, although pa-
tients with both mutations exhibit outcomes similar to NPM1 mutation alone.4,54

Biallelic CEBPA
Approximately 4% to 9% of children and young adults with AML carry mutations in the
single-exon gene CEBPA, of which there are 2 distinct groups of mutations.58,59 Trun-
cating mutations in the N-terminal region of CEBPA are located between the primary
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translation start site and a second alternative site, which abrogates expression of the
longer p42 isoform while preserving translation of the p30 isoform. This p30 isoform
has been shown to act in a dominant negative manner, inhibiting activity of
p42.60–62 The second class of CEBPA mutations typically are in-frame deletions and
insertions that disrupt the C-terminal basic leucine zipper (bZIP) region and are
thought to impair DNA binding and/or homodimerization.63 Biallelic CEBPA–
mutated AML typically exhibits a combination of a truncating N-terminal mutation
with a mutation altering the bZIP region.
Data primarily from adult AML indicate that biallelic mutations are associated with

favorable outcomes, and the recent WHO classification of AML creates a distinct pro-
visional category for such occurrences in AML.64–67 A recent study of pediatric
CEBPA-mutated AML found no difference in outcomes between monoallelic and bial-
lelic CEBPA mutations; instead, it was the presence of a bZIP mutation alone that was
associated with improved event-free survival and overall survival.68 Whether this asso-
ciation is unique to pediatric AML or extends to adult AML has yet to be determined,
although previous studies indicate that monoallelic and biallelic CEBPA–mutated AML
exhibit distinct transcriptional profiles and may be distinct entities.69,70

Patients with CEBPA-mutated AML typically have a normal karyotype. Cooperating
mutations often are detected in GATA2, FLT3, and CSF3R.71,72 Although GATA2 mu-
tations did not influence outcomes, biallelic CEBPA–mutated pediatric AML with co-
occurring CSF3R mutations exhibited significantly inferior event free survival due to
high rates of relapse. Approximately 10%of individuals with biallelic CEBPAmutations
carry a germline pathogenic variant in CEPBA that is, associated with a hereditary pre-
disposition to AML.63,69

RUNX1
Pediatric AML cases carry somatic mutations in RUNX1 much less frequently (3%)
than is observed in adult patients (15%), although there is an increased prevalence
of RUNX1 mutations in pediatric AMKL (10%).11,73,74 AML with mutated RUNX1 is
associated with inferior outcomes and older age in pediatric cases.4,75 Although
most cases have a normal karyotype, they also can be identified with complex karyo-
types, and 1 study found RUNX1-RUNX1T1 rearrangements in 22% of cases
harboring a RUNX1 mutation.75

FLT3
FLT3 is a receptor tyrosine kinase that is essential for normal hematopoietic develop-
ment. Somatic activating mutations in FLT3 are among the most common somatic al-
terations in pediatric AML, found in approximately 30% of cases, and are associated
with a normal karyotype.4,76 The most common activating FLT3 mutation is an
internal-tandem duplication in the juxtamembrane domain, which is observed in 10%
to 15% of pediatric cases.4 Point mutations in the activation loop domain, most
commonly at codons Asp835/I836, are found in approximately 10% of pediatric
AML, and recent evidence suggests that there are pediatric-specific activating muta-
tions in the transmembrane domain and juxtamembrane domain found in 7% of cases
and are associatedwith poor responses to standard therapy.4,77 Importantly, FLT3-ITD
mutations with a high allelic ratio (>0.5) are predictive of adverse outcomes in pediatric
AML,78–80 and patients are directed to consider HSCT at first complete remission. Mu-
tations In the activation loop, however, do not confer the same poor prognosis.78

The outcomes of pediatric patients with FLT3-ITD mutations are influenced by
cooperating mutations; NPM1 comutations are associated with the best outcomes.
In contrast, the presence of a WT1 mutation or NUP98-NSD1 fusion imparted worse
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outcomes compared with FLT3-ITDs alone.4 Importantly, FLT3 is a molecular lesion in
AML for which there is a targeted therapy, as the FLT3 tyrosine kinase inhibitors mid-
ostaurin and gilteritinib both have been approved for FLT3-mutated adult AML, and
trials for FLT3 inhibitors are under way in pediatric AML.81

Acute megakaryoblastic leukemia
AMKL is genetically unique in pediatric patients. Individuals with constitutional trisomy
21 have a greatly increased chance of developing lymphoblastic and myeloid leuke-
mia in general, and, when myeloid leukemia occurs, it often has a megakaryoblastic
phenotype. The distinction between AMKL occurring in the setting of Down syndrome
(DS), versus AMKL occurring in non-DS patients, is important because DS patients
with AMKL have a good prognosis.82 In contrast, non-DS AMKL have a variety of out-
comes influenced by the underlying molecular driver.
Non–DS AMKL has a high rate of structural variation, with 72% of cases carrying a

recurrent chromosomal translocation resulting in a gene fusion, including CBFA2T3-
GLIS (18%), NUP98-KDM5A (11.5%), RBM15-MKL1 (10%), and KMT2A fusions
(17%) and a new collection of rearrangements involving HOX genes (15%).11 In cases
without a recurrent chromosomal translocation, truncating mutations in exons 2 and 3
of GATA1 were identified in 9% of cases.11

Geneexpressionandclustering analysis indicate these recurrent genomic alterations
represent distinct subtypes of non–DS AMKL. Cooperating mutations also were
identified in JAK/STAT genes (17%), cohesion or CTCFgenes (18%), andRASpathway
genes (18%) and focal deletions/loss of heterozygosity in RB1 (14%) and gains of chro-
mosomes 19 and 21.11 KMT2A fusions often were associated with mutations in the
RAS pathway, whereas GATA1 mutations had coexistent JAK and cohesin mutations.
Cases of HOX gene rearrangements are enriched significantly in activating MPL
mutations and NUP98-KDM5A cases carried RB1 mutations in nearly all samples.11

Clinical outcomes appear to be highly correlated with the genetic subtype of non–
DS AMKL, with CBFA2T3-GLIS representing the subtype with the worst survival.11

KMT2A-rearrangenments and NUP98-KDM5A also represented high-risk subtypes.
Patients with GATA1 mutations had excellent outcomes, similar to those with DS
AMKL, potentially indicating these represent similar entities. HOX gene rearrange-
ments, RBM15-MKL1, and cases without a recurrent genomic alteration all showed
a favorable prognosis.11

These recurrent rearrangements are not found commonly in adult AMKL and high-
light the need for appropriate molecular testing to triage non-DS AMKL patients to
risk-adapted therapy. Both DNA and RNA sequencing with appropriate panels repre-
sents the best current method to distinguish among these genetic groups.

Germline Predisposition to Acute Myeloid Leukemia

The WHO recently has included germline variant driven AML as separate disease en-
tities, which becomes important to identify for patient management and family coun-
seling. Recent germline testing studies have demonstrated at least 10% of children
with cancer harbored a germline mutation in a cancer predisposition gene, although
rates in pediatric hematologic malignancies are lower.83–85

Although it long has been recognized that bone marrow failure disorders, such as
Shwachman-Diamond syndrome or Diamond-Blackfan anemia, have an increased
predisposition to AML, it now is recognized that there are a significant number of other
pathogenic germline variants that are associated with hematologic abnormalities,
such as thrombocytopenia and predisposition to AML. Although discussion of bone
marrow failure disorders is beyond the scope of this article, germline predisposition
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due to pathogenic variants in CEBPA, DDX41, RUNX1, ANKRD26, and ETV6 is
discussed.
Germline pathogenic variants in CEBPA are associated with a highly penetrant auto-

somal dominant predisposition to AML.86 Patients generally present with AML as chil-
dren or young adults; the diagnosis can be challenging, because no preceding clinical
phenotypes are reported and usually is considered upon tumor sequencing when bial-
lelic CEBPA mutations are identified in the tumor.
Among all patients with biallelic CEBPA mutations in AML, it is estimated that

approximately 10% carry a germline CEBPA mutation.63,69 Pathogenic germline
CEBPA variants generally are truncating variants located at the N-terminus of the
gene, with somatic inactivation of the second allele the result of a truncating or in-
frame deletion mutation in the C-terminal region.60 Prognosis for patients with patho-
genic germline CEBPA variants typically is very good, similar to that for sporadic AML
with biallelic somatic CEBPA mutations; however, those with pathogenic germline
CEBPA variants are at a higher risk of recurrence/relapse.87 The second somatic
CEBPA mutation usually is different upon recurrence, indicating the primary malig-
nancy was cured and that recurrence is due to a new tumor clone and represents a
new leukemic episode.87

Pathogenic germline DDX41 variants are associated with an autosomal dominant
form of hereditary predisposition to AML without additional clinical features, similar
to CEBPA.88 Affected individuals often develop a second mutation on the other
DDX41 allele, consistent with its proposed function as a tumor suppressor. Age of
onset, however, highly overlaps with sporadic adult disease and has not been re-
ported in children to date.89,90 Recent data suggest it is fairly common in sporadic
adult AML, where a pathogenic germline variant in DDX41 was identified in 2.4% of
cases.90 Although still a newly described entity, DDX41-associated predisposition to
AML may not be a pediatric-onset condition; further investigation is needed to under-
stand this condition fully.
Pathogenic germline variants in RUNX1 are causal for familial platelet disorder with

predisposition to AML.91 It is a rare diagnosis, with only 130 reported families to date,
despite its first report more than 20 years ago. Affected individuals report mild to mod-
erate thrombocytopenia, platelet dysfunction, although many do not exhibit a clear
bleeding history.92 Approximately 35% of patients develop myelodysplastic syndrome
(MDS), and/or AML occurs at an average age of 33 but has been reported in children
as young as 6.93 This disorder is inherited in an autosomal dominant manner, with
most reported and de novo germline RUNX1 mutations reported in patients without
a family history.94,95 Clinical presentation can be variable, even within the same family,
and some patients initially can present with AML.93 Prognosis for affected individuals
who progress to AML is poor, and allogenic stem cell transplantation typically is rec-
ommended in pediatric patients. Asymptomatic RUNX1 mutation carriers develop a
clonal hematopoiesis of indeterminate potential with a cumulative risk of greater
than 80% by age 50, demonstrating there are additional clinical features in carriers.96

Germline RUNX1 mutations are are truncating variants that are distributed
throughout the coding region of the gene and missense mutations that are enriched
in the RUNT domain.
AML samples from affected individuals often show somatic mutations affecting the

second RUNX1 allele but otherwise show few additional somatic mutations. When
they are identified, ASXL1, PTPN11, STAG2, BCOR, DNMT3A, and GATA2 have
been reported.93,96

ANKRD26 is associated with one of the most common inherited thrombocytope-
nias, with patients exhibiting lifelong mild to moderate thrombocytopenia, normal
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platelet size, and a mild bleeding phenotype, although some may present initially with
a myeloid malignancy.97,98 Studies demonstrate an increased risk for developing
acute leukemias (4.9%), MDS (2.2%), and chronic myeloid leukemia (CML) (1.3%).99

Pathogenic ANKRD26 variants primarily are substitutions located within a discrete re-
gion of the 50 UTR of ANKRD26, and additional studies indicate these variants result in
upregulation and persistent expression of ANKRD26 through a loss of the repressive
binding of RUNX1 and FLI1.97 Penetrance for thrombocytopenia is nearly complete
and diagnosed in adulthood, and transformation to myeloid malignancies has been re-
ported as early as 30 years, suggesting this may not be a pediatric-onset malignancy;
however, with only 230 affected individuals reported to date, pediatric onset cannot be
excluded.98,100

ETV6 is associated with an autosomal dominant inherited thrombocytopenia in
which affected individuals display an increased risk for a variety of hematological ma-
lignancies, including ALL, CML, and MDS/AML.101,102 Thrombocytopenias in affected
individuals are highly variable, although bleeding symptoms typically are mild and
accompanied by either normal or large platelets.103 Pathogenic variants typically
are missense or frameshift alterations in the C-terminal ETS domain that confer a
dominant negative effect through binding and mislocalization of wild-type
ETV6.101,102 Among the germline mutation carriers published, ALL, typically pre–B-
cell leukemia, is the most common malignancy identified, followed by myeloid malig-
nancies. Age of presentation for malignancies ranges from 2 years to 82 years,
demonstrating this is a pediatric-relevant cancer predisposition syndrome.103

Finally, patients with pathogenic germline variants in GATA2 have variable syn-
dromic presentations characterized by immunodeficiency, bone marrow failure, and
an autosomal dominant predisposition to development of MDS/AML.104–107 Affected
individuals typically exhibit B-cytopenia, DC-cytopenia, NK-cytopenia, and monocy-
topenia and show susceptibility to nontuberculosis mycobacterial, fungal, and viral
(in particular, Epstein-Barr virus and human papillomavirus) infections. Presentations
are highly variable in terms of age of onset and disease severity and also can include
additional phenotypes, such as primary lymphedema, deafness, and aplastic ane-
mia.104,108 Pathogenic loss of function variants typically are truncating alterations up-
stream of zinc finger 2, missense variants within zinc finger 2, or noncoding variants
within intron 4 that disrupts a transcriptional enhancer.104

Myeloid neoplasms develop in up to 75% of patients with an age of onset ranging
from 3 years to 78 years with a median of 20 years.109 Because a majority of patho-
genic germline variants are de novo, most patients do not have a suggestive family his-
tory. Furthermore, myeloid malignancies can present in the absence of preceding
hematological phenotypes, demonstrating the utility of genomic testing for this
diagnosis.

Clinical Genomic Testing

Advances in genomic technologies have altered the landscape of clinical genetic
testing for hematological malignancies dramatically. The diversity and prominence
of chromosomal rearrangements and cooperating somatic sequence variants in pedi-
atric AML necessitate the diagnostic testing for both types of genomic variants.
Structural variants historically have been evaluated by traditional cytogenetics,

including karyotype and fluorescence in situ hybridization. These approaches later
were augmented with targeted polymerase chain reaction (PCR)-based molecular
methods, including quantitative real-time PCR and qualitative PCR, which can
query a small number of known rearrangement partners, often with superior
sensitivity.
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NGS-based methodologies have the advantage of assessing many or even all
genomic regions for structural variation simultaneously. NGS-based methods for the
detected of chromosomal rearrangements can query DNA or RNA. DNA-based
methods typically rely on the enrichment of known breakpoint regions through either
hybrid capture or amplicon-based methods. This approach has the advantage that it
can be added to a gene panel for the detection of somatic sequence variants, enabling
the detection of both variant types in 1 assay. DNA-based fusion detection requires
prior knowledge of the DNA breakpoints, which typically reside within intronic regions,
are highly variable, and can be composed of repetitive or nonunique sequences that
are challenging to specifically capture, sequence, and bioinformatically map to the
appropriate genomic region. Thus, DNA panel–based methods typically exhibit lower
sensitivity for known fusions and offer limited ability to identify novel rearrangements.
Additionally, this approach cannot determine whether the identified fusion is tran-
scribed or whether it is likely to result in a functional protein, because novel or unex-
pected patterns of RNA splicing often are observed. Whole-genome sequencing
theoretically can identify any known or novel structural variant, but its clinical utility
is limited by the high cost, lower depth of sequence recovered, and computational
burden related to the large amount of data generated by this method.
RNA-based fusion detection methods rely on an initial reverse transcription step to

produce a cDNA library, and can use an upstream enrichment for known fusion part-
ners through hybrid capture or anchored multiplex PCR.110–112 Because these enrich-
ment approaches generally target exonic regions, they are able to reduce the burden
of sequencing per sample while retaining high sensitivity and the ability to identify
novel rearrangement partners. A recent study revealed RNA-based approach
exhibited superior performance to DNA, identifying fusions in 15% of lung cancer
cases without a significant oncogenic driver.113 A more unbiased approach, whole
transcriptome sequencing, retains sensitivity of other RNA-based approaches but of-
fers the ability to identify completely novel and unanticipated fusion genes. The main
limitation of RNA-based methods is that they rely on the production of a chimeric tran-
script, which is not produced by some rearrangements that rely on the association of
an oncogene with a strong promoter element, such as the immunoglobulin rearrange-
ments common in lymphomas. With respect to pediatric AML, most reference labora-
tories offer assays designed for adult malignancies, with a few academic laboratories
offering diagnostics designed for pediatric patients.114–116 Although there is significant
overlap between adult and pediatric AML, there are several pediatric specific and rare
rearrangements that may not be assayed by targeted approaches. Thus, nonpediatric
specific reference tests that utilize transcriptome sequencing may represent a supe-
rior approach.
Molecular genetic testing for somatic mutations has similarly progressed from the

targeted analysis of a small number of genomic regions through targeted molecular
methods and Sanger sequencing, to the simultaneous sequencing of many genes
via NGS. NGS-based diagnostics are able to detect single nucleotide variants and
small insertions/deletions (<20 bp) with high sensitivity. The sensitivity for insertions/
deletions greater than 20 bp diminishes with increasing length of the variant also
can be negatively influenced by homologous sequences elsewhere in the genome
or low sequence complexity (repetitive elements). This is an important consideration
for somatic mutations that involve tandem duplications, such as FLT3-ITDs, for which
custom bioinformatics approaches are needed to specifically identify this mutation
and may not match the sensitivity of targeted molecular methods at this time. Larger
exon and gene level copy number changes also can be detected by NGS, with greater
sensitivity for larger genomic copy number changes and gene amplifications.
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Clinical DNA sequencing typically relies on the enrichment for coding exons and
other clinically relevant genomic regions by hybrid capture or amplicon-based ap-
proaches and can vary significantly in the number of genes assayed. Targeted panels
ranging from 10 genes to 100 genes, and in some cases focusing only on mutation
hotspots and/or actionable genomic findings may be offered to reduce costs while
maintaining clinical sensitivity. The rapid evolution of targeted therapies, however, ne-
cessitates frequent content updates that require revalidation of the assay and may
mitigate some benefits of focused assays. Many commercial panels use a pan-
cancer approach that targets most clinically relevant genes across all cancer types
and also can offer reporting of genomic signatures, such as microsatellite instability,
tumor mutational burden, and a variety of mutational signatures that are associated
with clinical benefit to targeted therapies. It is common practice for diagnostic labora-
tories to offer solid tumor and hematological tests as separate tests, which can be
based on the same wet bench procedure with different bioinformatic/interpretive pro-
cesses or completely separate wet bench processes. Exome sequencing for oncology
diagnostics now is clinically available, providing a more complete mutational land-
scape for oncology patients, and offers the advantage of being able to identify new
and emerging biomarkers.

SUMMARY

Although there likely are additional rare driver genetic lesions to be identified in pedi-
atric AML, the field going forward will focus more on optimizing prognosis for pediatric
AML subtypes based on coexistent mutations. The possibility of a germline predispo-
sition to AML always should be considered, particularly when genomic testing of ma-
lignancies reveals a suggestive mutation. The development of emerging precision
therapies will serve only to increase the utility of genomic testing for this patient
population.

CLINICS CARE POINTS

� Given the remarkable heterogeneity of chromosomal and molecular alterations that drive
pediatric AML, broad testing methodologies, such as NGS-based panels and exome/
genome sequencing, and RNA-based fusion detection should be employed to augment
conventional cytogenetics for optimal sensitivity.

� Detection of a diverse set of driver mutations in pediatric AMKL has high prognostic
significance.

� Hereditary predisposition to AML, although rare, should be considered when interpreting
somatic genomic testing.
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