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abstract Genomic characterization of pediatric patients with acute myeloid leukemia 
(AML) has led to the discovery of somatic mutations with prognostic implications. 

Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in 
risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, 
and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute 
leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophe-
notypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic 
leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations 
have different outcomes, demonstrating the impact of mutational composition on survival. Across the 
cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional 
identity and the presence of a stem cell–like gene-expression signature. Integration of gene expression 
and somatic mutations leads to improved risk stratification.

Significance: Immunophenotype and somatic mutations play a significant role in treatment approach 
and risk stratification of acute leukemia. We conducted an integrated genomic analysis of pediatric mye-
loid malignancies and found that a combination of genetic and transcriptional readouts was superior to 
immunophenotype and genomic mutations in identifying biological subtypes and predicting outcomes.
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Introduction
Acute myeloid leukemia (AML) comprises a heterogene-

ous group of malignancies that are linked by the presence 
of blasts displaying morphologic and immunophenotypic 
features of myeloid cell differentiation. These characteris-
tics served as the initial approach to subdivide AML into 
distinct clinical entities (1). Morphology and immunophe-
notype, however, are limited in biological, prognostic, and 
therapeutic significance. The identification of cytogenetic 
alterations and molecular lesions has allowed newer classifi-
cation schemes to be developed with the most recent widely 
used approach being the World Health Organization classifi-
cation of AML (2). Although the latter classification scheme 
divides AML into many distinct clinical, morphologic, and/or 
molecular subtypes, from a clinical perspective most current 

therapeutic pediatric protocols stratify patients into favora-
ble, intermediate, and poor prognostic groups (3). Therapy in 
these groups is based on the relative risk of relapse, with poor 
prognostic groups proceeding to allogeneic hematopoietic 
stem cell (HSC) transplantation in first remission when a 
suitable donor is available.

With the development of genome-wide gene-expression 
profiling, array-based comparative genomic hybridization 
methodologies, and next-generation sequencing technologies, 
the field has gained a greater understanding of the molecu-
lar features involved in the occurrence of pediatric myeloid 
malignancies. Several pathologic lesions have been found to 
have prognostic implications contributing to a continuous 
refinement of risk stratification over time in the context of 
modern therapy. We previously applied an integrated analysis 
to a large cohort of pediatric acute megakaryoblastic leukemia 
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(AMKL) that underwent next-generation sequencing with the 
goal of identifying biologically and clinically relevant subtypes 
so that we could gain a greater understanding of the biology 
of the disease as well as inform clinical decision-making (4). 
In that study, using gene-expression profiling coupled with 
somatic variants and outcome data, we were able to identify 
distinct molecular subtypes with varying outcomes. These 
results led to a recommendation to limit high-risk designa-
tion to a subset of patients, which has already been instituted 
in the ongoing multi-institutional AML16 trial for newly 
diagnosed pediatric patients with AML (NCT03164057) and 
several other collaborative group protocols. Here we apply a 
similar approach to a cohort of 435 pediatric patients with a 
spectrum of myeloid-related malignancies to provide a com-
prehensive view of this clinical entity and propose a refined 
classification scheme with clinical utility. Using this approach, 
we identify a previously undescribed subtype that spans a 
T-lineage and myeloid continuum, as well as new prognostic 
mutational events within previously described subtypes. Fur-
ther, we demonstrate that mutational events, transcriptional 
profile, and evidence of a primitive hematopoietic progenitor 
gene-expression signature all associate independently with 
outcome. The most significant association occurs when all 
three of these factors are combined, arguing in favor of sub-
group classification by comprehensive molecular profiling to 
optimize risk stratification in pediatric AML.

Results
Genomic Landscape of Normal and  
Complex Karyotype Pediatric AML

The Children’s Oncology Group (COG)–NCI TARGET 
AML initiative molecularly characterized 993 pediatric AML 
cases, including 197 specimens that underwent comprehen-
sive whole-genome sequencing (WGS; ref. 5). Of these, 94 car-
ried one of three oncogenic fusions known to be strong drivers 
of leukemogenesis: RUNX1–RUNX1T1, CBFB–MYH11, and 
KMT2A rearrangements (KMT2Ar). Among all other somatic 
alterations detected, only 10 occurred in more than 5% of 
subjects, all of which had been described previously. This 
suggested that low-frequency molecular subsets may exist 
that require larger cohorts to fully elucidate. To address this 
limitation, we selected 122 pediatric AML normal, noncom-
plex, and complex karyotype specimens from five cooperative 
study groups (SJCRH, DCOG, NOPHO, AIEOP, and BFM) 
that lacked RUNX1–RUNX1T1, CBFB–MYH11, and KMT2Ar 
by clinical testing for WGS and/or whole-exome sequencing 
(WES) and RNA sequencing (RNA-seq) to enrich for cases that 
carry low-frequency events (Supplementary Tables S1 and S2; 
Fig. 1A). Structural variations (SV), copy-number alterations 
(CNA), single-nucleotide variations (SNV), and indels were 
determined by our established pipelines, as well as an evalua-
tion for regulatory rearrangements driving oncogene overex-
pression through enhancer hijacking (Supplementary Tables 
S3–S9 and Supplementary Figs. S1 and S2; ref. 6). When 
considering exonic SNV/indel, CNA, and SV calls, mutational 
burden ranged from 1 to 101 somatic events, including a case 
with TP53-associated chromothripsis that carried 89 lesions 
in total (Supplementary Table S9; Supplementary Figs. S1 
and S3). In addition to known AML somatic mutations in 

genes such as CEBPA, GATA2, NPM1, WT1, FLT3, NRAS, KRAS, 
ETV6, RAD21, SMC1A, STAG1, STAG2, STAG3, SMC3, and rear-
rangements in NUP98 and KAT6A, we identified rare events 
in known oncogenic drivers. These include internal tandem 
duplications (ITD) in GATA2, RUNX1, and CEBPA, as well as 
the repositioning of a distal ZEB2 enhancer, MYC enhancer, 
or ETV6 enhancer to ectopically activate BCL11B, MECOM, 
and MNX1 loci, respectively (Supplementary Table S6; Sup-
plementary Figs. S4 and S5). Interestingly, 15 AML cases 
(12.3%) carrying loss-of-function mutations in polycomb 
repressive complex 2 (PRC2) genes were found to resemble 
an early T-cell precursor acute lymphoblastic leukemia (ETP-
ALL) gene-expression profile (GEP) by gene set enrichment 
analysis (GSEA; Supplementary Fig. S6). ETP-ALL exhibits 
aberrant expression of stem cell and myeloid markers and has 
been shown to have a GEP consistent with transformation of 
a stem cell progenitor (7, 8). Further, mixed phenotype acute 
leukemias (MPAL) with T and myeloid lineage characteris-
tics have previously been suggested to be in this spectrum 
of immature leukemias (9). We therefore hypothesized that 
these PRC2-mutated AML cases represented the myeloid end 
of this continuum. To provide global transcriptional context 
to these ETP-like AMLs and evaluate a comprehensive cohort 
encompassing a range of pediatric myeloid malignancies, we 
integrated results from previously published AML (N = 169), 
MPAL (N = 80), AMKL (N = 45), and ETP-ALL (N = 19) data 
sets that had RNA-seq and either WES or WGS available for 
a total of 435 cases (Supplementary Table S10 and Fig. 1A; 
refs. 4, 5, 7–9).

Molecular Classifier of Pediatric Myeloid 
Malignancies Agnostic of Immunophenotype

T-distributed Stochastic Neighbor Embedding (t-SNE) vis-
ualization using a 381-gene list derived from the top 100 most 
variably expressed transcripts within each of the five sequenc-
ing data sets revealed a clear molecular classifier, identifying 
groups that had consistent mutational compositions but were 
agnostic of immunophenotype (Figs. 1B and C and 2; Supple-
mentary Tables S10–S13; Supplementary Fig. S7). A bootstrap 
hierarchical clustering procedure defined subgroups with an 
overall reproducibility of 97.4% and highly concordant with 
the t-SNE transcriptional subgroups (adjusted Rand index =  
0.72; Supplementary Table S14), indicating the subgroups 
identified by t-SNE are statistically meaningful. This classi-
fier allowed the distinction of 63 cases with an ETP-ALL GEP 
comprising a mixture of AML (N = 12/63, 19%), acute undif-
ferentiated leukemia (AUL; N = 1/63, 1.6%), MPAL (N = 31/63, 
49.2%), and ETP-ALL (N = 19/63, 30.2%) leukemias (bootstrap 
reproducibility = 93.6%; Fig. 1B). All but one MPAL case within 
this subgroup coexpressed T-lineage antigens in addition to 
either myeloid and/or B-lineage antigens (Fig. 1B; Supplemen-
tary Table S10). Expression of MPO and CD3E confirmed that 
the reported immunophenotypes of these cases were correct 
(Supplementary Fig. S8). A separate validation cohort of 399 
pediatric AML cases with microarray data confirmed the pres-
ence of this entity with 23 cases identified (Supplementary  
Fig. S9; Supplementary Tables S15 and S16). A five-gene classi-
fier consisting of CD3G, COCH, SLC35D2, SPTLC3, and TOR4A 
was able to predict these cases in both the discovery and valida-
tion cohorts (AUC 0.977 and 0.88, respectively). A molecularly  
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distinct subtype of acute leukemia termed acute myeloid/ 
T-lymphoblastic leukemia (AMTL), with shared myeloid and 
T-lineage features, has previously been proposed by Gutierrez 
and Kentsis (10). In support of this entity, they noted shared 
gene mutations in prior sequencing reports of T-lineage and 
AML studies, including WT1, PHF6, RUNX1, and BCL11B. 
Consistent with this, transcriptionally defined AMTL cases 
in our discovery cohort carried mutations in these genes and 
were found to fall into one of two subgroups: a group charac-
terized by FLT3-ITD (N = 26/63, 41.3%) and a second group 
enriched for loss-of-function alterations in one of three core 
PRC2 complex genes, including EZH2, SUZ12, and EED, or a 
splicing factor mutation that leads to inclusion of a cryptic 
exon resulting in truncated EZH2 transcripts predicted to 
undergo nonsense mediated decay (N = 37/63, 58.7%; Fig. 3A; 
Supplementary Fig. S10; ref. 11). Both subsets were found 
to carry cooperating events in transcription factors (WT1, 
NOTCH1, ETV6, PHF6, RUNX1, IKZF1, BCL11B TLX3); unique 
to PRC2 cases were activating events in RAS (NRAS, KRAS, 
NF1) and JAK/STAT (JAK1, JAK3, IL7R, SH2B3) signaling cas-
cades, as well as loss-of-function mutations in genes that play 
a role in G1 checkpoint arrest (RB1, CCDN3, CDKN1B, and 

CDKN2A/B; Fig. 3A). In particular, network analyses identi-
fied a strong association between transcription factors associ-
ated with T-lineage differentiation (NOTCH1, PHF6, BCL11B, 
TLX3, TAL1, and IKZF2), PRC2 loss-of-function mutations, 
and JAK/STAT pathway alterations, whereas FLT3-ITD cases 
were enriched for RUNX1 and WT1 transcription factors (Sup-
plementary Fig. S11; ref. 12). A comparison of overall survival 
clearly demonstrated that outcomes of the isotranscriptional 
AMTL subset are influenced by the mutational spectrum. 
Irrespective of whether the patient received AML, ALL, or a 
hybrid treatment approach, FLT3-ITD–positive AMTL cases 
were associated with a favorable outcome, whereas those with 
PRC2 mutations had a poor prognosis (P = 8 × 10−4; Fig. 3B; 
Supplementary Table S10). Consistent with this, AMTL cases 
in our AML validation cohort for which mutational data 
were available (N = 16/23, 69.6%) were similarly composed of  
FLT3-ITD–positive (N = 8/16, 50%) and FLT3-ITD–negative 
cases (N = 8/16, 50%); a subset of the negative cases (N = 3/8) 
had copy-number data available that confirmed deletional 
events in PRC2 genes in all three cases and an association 
with poor outcomes (P = 0.01; Supplementary Fig. S12; Sup-
plementary Table S16). PRC2 loss-of-function mutations were 

Figure 1.  Transcriptional identities correlate with key oncogenic driver events and are agnostic of immunophenotype. A, Study design. 122 normal, 
noncomplex, and complex karyotype pediatric specimens were selected. Exclusion criteria for sequencing include FAB M3 (acute promyelocytic leukemia, 
APML), FAB M7 (AMKL), core binding factor (CBF) leukemia (RUNX1–RUNX1T1, CBFB–MYH11), and KMT2Ar cases. Cases underwent WGS, WES, and 
RNA-seq. Data were combined with four other pediatric data sets, including FAB M7, early T-cell precursor acute lymphoblastic leukemia, the TARGET 
AML data set, and pediatric mixed phenotype acute leukemia for a total of 435 cases (4, 5, 7–9). Ten additional KMT2Ar AML cases were sequenced 
to increase the cohort size. Transcriptional clusters as identified by t-SNE, somatic calls, and outcome correlates were utilized to identify biological 
subtypes as previously described (4). NGS, next-generation sequencing. B, RNA-seq of 435 cases of pediatric AML, AMKL, MPAL, and ETP were combined 
and batch corrected. t-SNE visualization utilizing the top 100 differentially expressed genes within each data set. Immunophenotype of cases as deter-
mined by flow cytometry at diagnosis is shown. AMTL, acute myeloid/T-lymphoblastic leukemia; AUL, acute undifferentiated leukemia; B/M, B-lymphoid 
and myeloid coexpression; MK, mixed karyotype; T/B, T-lymphoid and B-lymphoid coexpression; T/B/M, T-lymphoid, B-lymphoid, and myeloid coexpres-
sion; T/M, T-lymphoid and myeloid coexpression. C, Key oncogenic driver mutations as determined by next-generation sequencing. Ph-like, Philadelphia 
chromosome–like acute lymphoblastic leukemia; PTD, partial tandem duplication; Txn, transcription.
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also present in a subset of core binding factor cases (N = 8/61, 
13.1%; Supplementary Table S12). To determine if the pres-
ence of PRC2 mutations confers a poor prognosis in these 
patients as well, we evaluated outcomes in pediatric core bind-
ing factor AML cases from two previously published cohorts 
and found an inferior event-free survival in patients carrying 
both KIT activating mutations and PRC2 loss-of-function 
mutations (N = 5/142, 3.5%; P = 0.026; Supplementary Table 
S17; Supplementary Fig. S13; refs. 5, 13). In alignment with 
these data, prior studies have shown chemoresistance as a 
result of PRC2 loss in AML and T-lineage ALL models (14, 15).

Outcomes of Isomutational Subsets Are 
Influenced by Transcriptional Identity

The favorable prognosis of AMTL cases carrying FLT3-ITD 
included those with cooperating WT1 mutations, several of 
which were classified as AML by immunophenotype (N = 
10/26; 38.5% of FLT3-ITD AMTL cases carried WT1 muta-
tions, two of which were AML). Historically, pediatric patients 
with AML with FLT3-ITD and a WT1 mutation have been 
reported to have a dismal prognosis (16). A significant number 
of these FLT3-ITD/WT1 double-mutant cases were also found 
to associate within a different transcriptional cluster, AML 
MK-V (N = 14/25, 56% in MK-V; N = 10/25, 40% in AMTL; 
N = 1/25, 4% in MK-IV; Fig. 1B and C). In contrast to AMTL, 
FLT3-ITD/WT1 double-mutant patients who fell into AML 
MK-V transcriptional cluster had an extremely poor outcome 
consistent with prior reports (Fig. 3C). Thus, the presence 
of these somatic events alone is insufficient to distinguish 
high-risk status. A comparison of differentially expressed 
genes between AMTL FLT3-ITD/WT1 and AML MK-V  

FLT3-ITD/WT1 identified significant upregulation of genes 
within the HOX locus in AML MK-V cases (Fig. 3D). Although 
the mutational spectrum is known to influence the transcrip-
tional profile of leukemia, the cell that acquires the mutations 
(“cell of origin”) may also be reflected. To look at this further, 
we evaluated expression of the HOX locus in a normal hemat-
opoietic progenitor data set and found elevated expression of 
the HOX genes upregulated in our AML MK-V FLT3-ITD/WT1 
patients in both HSC and common myeloid progenitor (CMP) 
compartments compared with lymphoid  progenitors (LP; Fig. 
3D), suggesting that the differential HOX expression between 
the two subsets may reflect a stem cell–like state (17).

We, therefore, identified gene-expression signatures for the 
different hematopoietic subsets and looked for enrichment of 
those signatures in our two subsets of FLT3-ITD/WT1 patients 
to determine whether the correlation of stem cell–associated 
genes extended beyond the HOX locus. This analysis con-
firmed an enrichment in our AML MK-V cluster cases for HSC  
as well as CMP signatures in contrast to AMTL cases that have 
a greater enrichment for LP signatures (Fig. 3E). We hypoth-
esize that this reflects a more primitive cell of transformation 
in AML MK-V FLT3-ITD/WT1 cases that retain a stem cell  
progenitor–like state contributing to chemotherapy resistance. 
To assess whether this phenomenon is restricted to FLT3-
ITD/WT1 genotypes, we applied the same analysis to KMT2Ar 
cases that fell into AML MK-V and the 11q23-rearranged trans
criptional cluster (Fig. 1C; Supplementary Fig. S9). Consistent 
with the inferior event-free survival (EFS) of AML MK-V 
KMT2Ar cases compared with those in the 11q23-rearranged 
transcriptional cluster in both discovery and validation cohorts, 
we found a more pronounced enrichment for HSC and CMP 
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signatures in AML MK-V KMT2Ar, suggesting a more primitive 
stem cell–like state (Supplementary Figs. S14–S16).

Leukemia Stemness Is Unevenly Distributed 
across Myeloid Leukemias

Ng and colleagues previously developed a 17-gene tran-
scriptional score related to stemness, derived from func-
tionally defined leukemia stem cells of adult patients with 
AML, which was predictive of prognosis (LSC17; ref. 18). 
More recently, a six-gene LSC score has been developed 
with significant prognostic value in pediatric AML (pLSC6; 
ref. 19). To determine if the more primitive nature of AML 
MK-V FLT3-ITD/WT1 cases was reflected in this score, we 

compared pLSC6 in AML MK-V and AMTL FLT3-ITD/WT1 
patients (Fig. 3F). Consistent with enrichment of more prim-
itive hematopoietic progenitor gene-expression signatures, 
AML MK-V FLT3-ITD/WT1 patients had a higher pLSC6 
score (P = 0.038). To evaluate this more comprehensively 
across the cohort, we determined the pLSC6 score in nor-
mal hematopoietic progenitor subsets to define thresholds 
of low (lineage-committed cells), intermediate (multipotent 
progenitors), and high (pluripotent progenitors; Fig. 4A and 
B) values. Imposing these thresholds on our cohort, we iden-
tified a subset of patients with intermediate and high scores, 
which was significantly associated with an inferior overall 
survival (N = 302/435, 69.4% low pLSC6; N = 119/435, 27.4% 

Figure 3.  Genomic and transcriptional features of AMTL. Sixty-three cases spanning AML, AUL, MPAL, and ETP immunophenotypes shared a common 
transcriptional identity (see Fig. 1B). A, Mutational spectrum of AMTL cases. Del, deletion; Ins, insertion; LOH, loss of heterozygosity. B, Outcomes of 
patients with AMTL according to FLT3-ITD and PRC2 transcriptional identity. Dx, diagnosis; pOS, probability overall survival. C, Outcomes of FLT3-
ITD/WT1 double-mutant cases based on AMTL and MK-V transcriptional identity (see Fig. 1). D, Expression of HOX locus genes in normal hematopoietic 
progenitor subsets and FLT3-ITD/WT1 cases from AMTL and MK-V transcriptional clusters. CMP, common myeloid progenitor; HSCP, HSC progenitor; 
LP, lymphoid-restricted progenitor. E, Enrichment of gene-expression signatures from HSC, CMP, and LP in FLT3-ITD/WT1 cases from AMTL and MK-V 
transcriptional clusters. n.s., not significant. F, pLSC6 score of FLT3-ITD/WT1 cases from AMTL and MK-V transcriptional clusters.
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intermediate pLSC6; N = 14/435, 3.2% high pLSC6; P = 9.3 ×  
10−7 discovery cohort; and N = 262/399, 65.7% low pLSC6; 
N = 124/399, 31.1% intermediate pLSC6; N = 13/399, 3.2% 
high pLSC6; P = 2.1 × 10−6 validation cohort; Fig. 4C; Sup-
plementary Fig. S17). Although several subsets had uniform 
pLSC6 scores, such as CBFA2T3–GLIS2-, RUNX1–RUNX1T1-, 
CBFB–MYH11-, and MNX1-rearranged cases, other subsets 
had variable scores demonstrating heterogeneity in leukemia 
“stemness” (e.g., KMT2Ar cases), highlighting pLSC6 as an 
independent variable in addition to mutational type and 
overall transcriptional signature (Fig. 4D; Supplementary 
Table S17; Supplementary Figs. S18–S20).

Transcriptional Identity, Mutations, and  
Stemness All Contribute to Outcome

To evaluate the relative contribution of each of the factors 
identified in our study to carry an association with survival, 
we utilized a Cox proportional hazards model to look at 
associations with overall survival. Transcriptional identity, 

oncogenic drivers, and leukemia stemness were all indepen-
dently found to associate with outcome (Figs. 4C and 5A; Supple-
mentary Tables S18 and S19; Supplementary Figs. S17, S19, and 
S20). The greatest association occurred when all three of these 
factors were combined (P = 1.06 × 10−12 discovery cohort and 
P = 1.19 × 10−7 validation cohort). The impact of individual 
factors on outcome associations was variable in our discovery 
cohort, with CBFA2T3–GLIS2, ETS family rearrangements 
(FUS–ERG, EWSR1–ERG, FUS–FEV, FUS–FLI1, MN1–FLI1, and 
EWSR1–FEV), and high pLSC6 score having the greatest nega-
tive association with outcome, whereas CEBPA mutations 
(mono- and biallelic) and low pLSC6 carried the greatest 
positive association with outcome (Supplementary Tables 
S20 and S21; Supplementary Fig. S21). Within biological 
subgroups identified in pediatric AML, certain factors carried 
greater weight than others (Table 1). Utilizing these rules for 
risk stratification, we compared outcomes in our discovery 
and validation cohorts for our proposed genomic classifica-
tion (low, intermediate, and high risk) to those of the ongoing 

Figure 4.  Leukemia stemness is associated with overall survival. A, pLSC6 score was determined in normal hematopoietic progenitor subsets as 
previously described (17, 19). DC, dendritic cell; E, erythrocyte; G, granulocyte; GMP, granulocyte/macrophage progenitor; MEG, megakaryocyte; MEP, 
megakaryocyte/erythrocyte progenitor; NK, natural killer cell. B, pLSC6 scores from normal hematopoietic progenitors were used to define thresholds of 
low (lineage-committed cells), intermediate (multipotent progenitors), and high (pluripotent progenitors) values in our cohort. C, Imposing pLSC6 thresh-
olds on our cohort found a subset of patients with intermediate and high scores that were significantly associated with overall survival (P = 9.3 × 10−7). 
Dx, diagnosis; pOS, probability overall survival. D, t-SNE visualization of the cohort with pLSC6 levels indicated. Thresholds of low, medium, and high as 
determined in A. B/M, B-lymphoid and myeloid coexpression; Ph-like, Philadelphia chromosome–like acute lymphoblastic leukemia; PTD, partial tandem 
duplication; Txn, transcription.

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

Time after Dx (mo)

pO
S

n = 292

n = 103

n = 14

pLSC6
Low
Medium
High

pLSC6

F
re

qu
en

cy

−2 −1 0 1 2

0

20

40

60

80

100

−100 −50 0 50 100 150

−50

0

50

100

t-SNE coordinate 1

t-
S

N
E

 c
oo

rd
in

at
e 

2

Low
Medium
High

A

C

B

D

pLSC6 
+2.59

+1.15

Ly1

Ly2

DC
G

E

MEG

MEP

HSC

CMP

GMP

Pre-B/NK

CBFA2T3–GLIS2RUNX1-r

CBFB–MYH11

AML:KMT2A-r

MPAL
B/M:

Ph/like,
B Txn factor,

ZNF384-r

CEBPA/GATA2

NPM1
NUP-r

FLT3-ITD
FLT3-ITD+WT1

AMTL:PRC2

MNX1-r

ETS-r
AMKL:GATA1

AMTL:FLT3

AMKL:HOX-r
NUP-r, KMT2A-r

pLSC6

P = 9.3e−07



Integrated Molecular Diagnostics for Pediatric AML RESEARCH ARTICLE

	 NOVEMBER  2021 blood CANCER DISCOVERY | 593 

multi-institutional AML16 prospective clinical trial for newly 
diagnosed pediatric patients with AML (NCT03164057; Fig. 
5B and C validation cohort; Supplementary Figs. S22–S25 
discovery and combined cohorts; Supplementary Tables S16, 
S22, and S23). For a given risk classification, we defined and 
computed the risk classification utility (RCU), which con-
siders estimate outcomes for each risk group (outcome dis-
crimination index) and the proportion of patients designated 
as high or low risk given that intermediate risk designates a 
patient lacking definitive high-risk or low-risk characteris-
tics, and thus represents a patient whose status is unknown 

(Supplementary Table S24). A bootstrap procedure was then 
used to quantify the statistical variability and significance of 
comparisons of the RCU with the two classification schemes 
(Supplementary Table S25). In both the discovery and valida-
tion cohorts as well as in a combined analysis, our proposed 
classification was found to have a statistically significant 
greater RCU for EFS than AML16 (P = 0.036 discovery cohort, 
P = 0.018 validation cohort, and P = 0.036 combined cohorts; 
Fig. 5C; Supplementary Fig. S25). In particular, the proposed 
classification was superior at identifying high-risk patients 
within the intermediate- and low-risk groups, resulting in 

Figure 5.  Oncogenic driver events, transcriptional identity, and leukemia stemness all contribute to outcome in pediatric myeloid-related acute 
leukemias. A, Integrative Cox proportional hazards model to look at associations with overall survival in the discovery cohort (38). Each bar represents the 
−log10 P value of covariates and their association with survival. The covariates used in the model to calculate the P value are indicated below the graph with 
a check mark. Immunophenotype as a single covariate failed to reach statistical significance. B, Probability of EFS (pEFS) of an ongoing multi-institutional 
prospective pediatric AML trial (AML16) and the proposed classification scheme based on this article for the validation cohort. See Supplementary Figs. 
S22 and S23 for results of each independent cohort. C, Performance of the proposed genomic classification relative to that utilized in an ongoing prospec-
tive upfront pediatric AML study (NCT03164057) in terms of discrimination capability (left) and percentage of high-risk or low-risk classified patients 
(right) culminating in a risk classification utility score (top, right) for the validation cohort. See Supplementary Figs. S24 and S25 for results of each inde-
pendent cohort. D, Working model. Mutational events in distinct hematopoietic progenitor subsets lead to transformation, and both components contribute 
to the transcriptional identity and leukemia stemness. Chemotherapy sensitivity and therefore outcomes are a composite of these factors.
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Table 1. Biological subtypes identified in pediatric AML cases

Subtype Immunophenotypes across the entire cohort (N)a Proposed risk status based on overall survival (reference)b,c

AMTL AML (12), MPAL (30), AUL (1), ETP (19) FLT3-ITD mutation present: low
PRC2 mutation present: high

CEBPA (mono-
and biallelic)

AML (28), MPAL (3) pLSC6 medium or high: high
pLSC6 low: low (41)

RUNX1–
RUNX1T1

AML (27) PRC2/KIT double-mutant present: high
pLSC6 medium or high: high
PRC2/KIT double-mutant absent and pLSC6 low: low (42)

CBFB–MYH11 AML (34) PRC2/KIT double-mutant present: high
pLSC6 medium or high: high
PRC2/KIT double-mutant absent and pLSC6 low: low (42)

MNX1-r AML (3), AMKLd, AUL (1) High (43)

ETS-r AML (10), AMKL (1) MPAL (2) High (44)

CBFA2T3–GLIS2 AML (2), AMKL (11) High (4, 45)

KMT2A-r AML (56), AMKL (10), MPAL (9), AUL (2), ETP (1) MK-V: high
AMKL: high (4)
pLSC6 medium or high: high
MK-V absent and AMKL absent, and pLSC6 low: intermediate (42)

GATA1 AML (3), AMKL (6), MPAL (1) pLSC6 medium or high: high
pLSC6 low: low (4)

HOX-r AML (2), AMKL (13) pLSC6 medium or high: high
pLSC6 low: low (4)

NUP98-r AML (17), AMKL (6), ETP (3) High (4, 46–48)

NPM1 AML (25) pLSC6 medium or high: high
pLSC6 low: low (49, 50)

DEK–NUP214 AML (5) High (51)

FLT3-ITDe AML (28), MPAL (18), ETP (6) WT1 and MK-V present: high
pLSC6 medium or high: high
pLSC6 low and AMTL absent: intermediate

AML other AML (39), AMKL (6), MPAL (24) pLSC6 medium or high: high
pLSC6 low: intermediate (4)

aNumbers in parentheses indicate the number of cases across the discovery cohort with indicated immunophenotype. Genomic subtypes not identified 
in AML cases are not included in this table.
bOutcomes approaching 80% overall survival or greater are designated as low risk and survival less than 40% are designated as high risk. Literature 
support of previously described subtypes and risk status is indicated in parentheses.
cMinimal residual disease is considered an independent risk factor, and residual levels of disease following induction chemotherapy warrant escalation 
of risk status.
dReported in the literature (52).
eFLT3-ITD cases that are not included in the other subtypes (see Supplementary Fig. S26).

a lower proportion of intermediate-risk patients who had 
an improved EFS, which brings the proposed stratification 
closer to the ideal state—one in which there are only two risk 
groups: Patients who have an event (high risk) and those who 
do not (low risk; Fig. 5B).

Discussion
Gene expression, genomic classification, and leukemia 

stemness have all been shown to affect prognosis to vary-
ing extents in both adult and pediatric AML (5, 18–23). 
However, few studies to date and none in pediatric AML 

integrate all three of these aspects to determine the relative 
contribution to outcomes. Through this comprehensive 
approach and by including pediatric acute leukemias with 
myeloid characteristics, we were able to identify a previously 
undescribed subtype, AMTL, which spans a T-lineage and 
myeloid continuum as well as new prognostic mutational 
events within previously described subtypes, such as PRC2 
mutations in core binding factor leukemias. Recently, two 
groups have reported on acute leukemias with T-lineage 
markers such as cytoplasmic CD3 and/or CD2 that carry 
BCL11B enhancer hijacking events similar to several cases 
within the AMTL subgroup (24, 25). Unique to our study is 
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the identification of AMTL cases that are devoid of T-lineage 
markers by flow cytometry and the distinction of the two 
subsets within AMTL that have differing outcomes. It has 
been shown through murine modeling that T-LP retain a 
broad lineage potential when transformed with oncogenes 
and specifically have the ability to differentiate into myeloid 
leukemia while retaining a lymphoid epigenetic memory, 
consistent with our findings (26). In this study by Riemke 
and colleagues, a cohort of adult patients with AML was 
found to resemble the murine T-LP–derived myeloid leuke-
mias by gene expression. This population, however, had a 
negative association with ETP-ALL by GSEA, and the muta-
tion profile of these patients was predominated by muta-
tions not found in pediatric AMTL, including NPM1, IDH2, 
and DNMT3A. This difference may be a result of distinct 
oncogenic events that are acquired by a T-LP as opposed to 
a difference in the cell of origin (Fig. 5D).

The existence of patients with FLT3-ITD/WT1 in AMTL 
that had superior outcomes, in contrast with previously 
published results, led us to compare outcomes of these 
patients across transcriptional subsets. The inferior over-
all survival of FLT3-ITD/WT1 double-mutant patients was 
restricted to those within the MK-V cluster. Of note, the vast 
majority of patients within this study were treated prior to 
the implementation of FLT3 inhibitors (2/291 patients with 
AML in the discovery cohort for whom treatment details 
were known received an FLT3 inhibitor at diagnosis, both 
of whom had events and are deceased; Supplementary Table 
S10). Although we cannot determine whether FLT3 inhi-
bition would improve outcomes of MK-V FLT3-ITD/WT1 
patients in our study, results from COG AAML1031 suggest 
that this targeted treatment approach can improve outcome 
in FLT3-ITD/WT1 patients with the caveat that the transcrip-
tional identity in this study is unknown (4). The absence of 
FLT3 inhibition in our cohort allowed us to identify iso-
mutational groups where disease outcome clearly associates 
with transcriptional identity and isotranscriptional groups 
where outcome clearly associates with mutational status. 
This finding has broad implications on variant interpretation 
in the era of precision medicine, as the impact on prognosis 
is not limited to the presence or absence of a given mutation. 
Furthermore, the incorporation of stem cell–associated sig-
natures also allowed us to distinguish patients who have the 
same genomic classification but differing outcomes (Table 1).  
The highest power and outcome associations occur when 
all three of these factors are combined, arguing in favor of 
comprehensive diagnostics to optimize risk stratification in 
pediatric AML. A multivariate analysis to evaluate the prog-
nostic informativeness of WT1 and FLT3-ITD mutational 
events after considering transcriptional identity, key driver 
mutation, and pLSC6 score supports this conclusion: Neither 
EFS nor overall survival was significantly associated with the 
presence of FLT3-ITD, a WT1 alteration, or the combination 
of these two after adjustment for pLSC6 score as a numeric 
predictor, transcriptional identity as a stratification factor, or 
driver mutation as a stratification factor (Supplementary Fig. 
S26; Supplementary Table S26). Further, neither EFS nor OS 
was significantly associated with FLT3-ITD, WT1, or the pres-
ence of both in models that considered only these variables as 
predictors (Supplementary Table S26).

The benefit of risk-adapted indications for HSC trans-
plantation in pediatric AML has recently been shown by 
the BFM study group, with significantly higher EFS and 
higher rates of HSC transplants through improvements in 
genetic risk stratification (27). In a disease entity where the 
chemotherapy approach has remained largely unchanged 
over time with a limited number of novel therapeutic agents 
on the horizon, risk stratification, refined allograft indica-
tions, and supportive care continue to be major factors that 
have led to the improvement in outcome over time (28). It 
is, therefore, imperative that risk stratification be optimized 
to the maximum extent to cure more pediatric patients with 
AML. The vast majority of pathogenic calls and transcrip-
tional information necessary to use our integrated approach 
can be obtained from paired WES and RNA-seq, which has 
been increasingly adopted in the clinical setting, arguing in 
favor of the feasibility of this approach (29–31). Targeted 
capture panels that detect SNV/indels and copy-number 
changes in combination with fusion detection assays are less 
comprehensive but also able to detect the vast majority of 
oncogenic lesions described in this study. In pediatric AML, 
all patients enrolled on the St. Jude AML16 study are already 
receiving Clinical Laboratory Improvement Amendments– 
certified WGS, WES, and RNA-seq on diagnostic blasts. 
Although next-generation sequencing approaches are becom-
ing increasingly standardized and prevalent in the field, bio-
informatic analyses and interpretation of mutational impact 
within a case based on transcriptional identity and leukemia 
stemness will require additional expertise to implement. To 
enhance the clinical applicability of this study, we developed 
a panel of five genes whose expression can distinguish AMTL 
cases that can be combined with the previously developed 
six-gene pLSC6 classifier—key determinants in our risk strat-
ification model. In combination with key mutational events, 
this allows one to follow a hierarchical decision-making tree 
to stratify a patient (Fig. 6).

The cell of origin of leukemia is defined as the nor-
mal hematopoietic cell from which the disease develops 
through the acquisition of mutations. A subset of cells 
termed “leukemia stem cells” are felt to propagate the 
disease over time, and studies have shown that similar to 
normal hematopoiesis, a hierarchical structure exists in 
leukemia, with the most primitive clone being identifiable 
through functional assays (32). Given the differentiation 
spectrum seen in leukemias, it can be a challenge to infer 
the cell of origin in bulk tumor populations. Despite this 
potential limitation, we found significant enrichment for 
more primitive progenitor cell signatures in patients with 
higher LSC6 scores. Our data are consistent with a model 
whereby a cell of origin acquires oncogenic driver muta-
tions, and these two factors both contribute to the tran-
scriptional identity of the leukemia and the stemness, all of 
which influence outcome (Fig. 5D).

In summary, comprehensive next-generation sequencing of 
pediatric AML can be utilized beyond pathogenic mutation 
calls to optimize risk stratification. Incorporation of transcrip-
tional identity and leukemia stemness in clinical decision-
making will further improve the identification of patients who 
may benefit from stem cell transplant in first remission and 
those who can be cured with chemotherapy alone.
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Methods
Cohort

Specimens sequenced in this study were provided from multiple 
institutions and collaborative groups. All samples were obtained 
with patient- or parent/guardian-provided written informed consent 
under protocols approved by the Institutional Review Board at each 
institution. Studies were conducted in accordance with the Interna-
tional Ethical Guidelines for Biomedical Research Involving Human 
Subjects. Samples were de-identified prior to nucleic acid extraction 
and analysis. WGS, WES, RNA-seq and analysis for SVs, SNVs, indels, 
and CNA were performed as previously described (4, 7). TARGET 
AML, ETP, MPAL, and AMKL cohorts have been previously published 
and were obtained with permission from database of Genotypes and 
Phenotypes (dbGaP) and/or St. Jude Children’s Research Hospital  
(4, 5, 7–9). Transcript expression levels for gene-expression analyses 
were estimated from RNA-seq data as fragments per kilobase of tran-
script per million mapped fragments (FPKM) as previously described 
(4). Data for samples sequenced in this study have been deposited 
to the St. Jude Cloud (www.stjude.cloud; ref. 33) and European 
Genome-phenome Archive (study ID EGAS00001004701).

RNA-seq Read Mapping, Gene-Expression Summary, and 
Batch Correction

RNA reads were mapped using our StrongARM pipeline, described 
previously (13). Paired-end reads from RNA-seq were aligned to the 
following four database files using Burrows–Wheeler alignment: (i) the 
human GRCh37-lite reference sequence, (ii) RefSeq, (iii) a sequence file 
representing all possible combinations of nonsequential pairs in RefSeq 
exons, and (iv) the AceView database flat file downloaded from UCSC, 
representing transcripts constructed from human expression sequence 
tags. Additionally, they were mapped to the human GRCh37-lite refer-
ence sequence using STAR. The mapping results from the databases 
(ii–iv) were aligned to human reference genome coordinates. The final 
BAM file was constructed by selecting the best of the five alignments.

Reads from aligned BAM files were assigned to genes and counted 
using HTSeq with the GENCODE human release 15-gene annota-
tion (34). The gene count matrix was used to generate an FPKM 
gene-expression data matrix using gene length information. A gene 
was called as “expressed” in a given sample if it had an FPKM value 
≥0.01 based on the distribution of FPKM gene-expression values, and 
genes not expressed in any sample were excluded from downstream 
analysis. The gene-expression data were further quantile normal-
ized using the normalizeBetweenArrays function available from the 
Limma R package (35). The detected batch effect due to data source 
of St. Jude versus TARGET was corrected using the ComBat method 
available from the R package sva (36).

381-gene Classifier
For construction of the 381-gene classifier, the top 100 most vari-

ant genes from each of the five data sets (this article, ETP-ALL, MPAL, 
TARGET AML, and AMKL) were combined using log2-transformed 
FPKM values and median-adjusted deviation (4, 5, 7–9). This proce-
dure effectively eliminated remaining batch effects (Supplementary Fig. 
S27). Visualization was performed using t-SNE using a perplexity value 
of 10 and 10,000 iterations (37). t-SNE coordinates from the run with 
the lowest final error (out of 10 runs) were selected for further analysis.

HSC Progenitor Gene-Expression Analysis
Single-cell HSC progenitor (HSCP) counts, SPRING plot coordi-

nates, and population assignments were taken from Pellin and col-
leagues (17). For comparing HSCP and leukemia gene expression, 
single-cell counts per gene were summed up for each of the 11 different 
HSCP populations, normalized to the number of cells in each popu-
lation, and log2 transformed. Resulting gene-expression values were 
scaled together with log2FPKM expression values of the 435 leukemias 
using the normalize between arrays function of Limma (method quan-
tile). pLSC6 scores and Spearman correlation coefficients were calcu-
lated using these values. For some analyses, multilymphoid progenitors 
and pre-B/natural killer values were averaged to generate LP values. 

Figure 6.  Hierarchical decision-making tree for proposed risk stratification. *, T-MPAL, MPAL with T-lineage markers. MPAL cases coexpressing B-lineage 
markers contained ZNF384, Ph+, Ph-like, and KMT2Ar oncogenes and should be treated with ALL-directed therapy unless they prove nonresponsive to 
this approach. **, FLT3-ITD cases that are not AMTL and lack high-risk and low-risk features such as NUP98r, monosomy 7, NPM1, and CEBPA. HR, high 
risk; IR, intermediate risk; LR, low risk.
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pLSC6-high, -medium, and -low cutoff values were based on HSCP 
population values, with the most primitive populations designated as 
high (populations 1, 2, 3, 7, 9, 10, and 11 from Pellin and colleagues), 
the more committed populations designated medium (populations 4, 
5, 6, and 8), and values lower than these low. Exact cutoff values were 
calculated using linear extrapolation.

Statistical Analysis
All analyses were done in R. Survival and global test analyses were 

performed as previously described (4). Treatment details for patients 
are included in Supplementary Tables S1 and S10. The integra-
tive statistical model was evaluated using the global test assuming 
interaction between the explanatory variables (38). Transcriptional 
identity and key oncogenic driver were defined as categorical and 
leukemia stemness (pLSC6) as a continuous variable, and assuming 
interaction between these three exploratory variables. Individual 
associations are shown in Supplementary Fig. S18, and main con-
tributing covariates clarified in Supplementary Table S15 by using 
pLSC6 as a categorical variable (low vs. medium/high).

Validation Cohort
A pediatric AML microarray gene-expression cohort of 443 cases was 

constructed based on previously published data (19, 39, 40). AML M5 
cases with t(15;17) were excluded from this cohort prior to assembly, 
because this subclass was absent from the discovery cohort and has 
excellent therapy options and disease outcome. Of these, 44 were also 
included in the discovery cohort and functioned as controls for the 
equivalence of the RNA-seq and microarray measured gene expression. 
Three hundred ninety-nine cases, which did not overlap, were used for 
gene-expression validation of results obtained in the discovery cohort. 
For 386 of these cases, disease outcome data were available (Supple-
mentary Table S15) and were used for outcome validation analyses.

Key oncogenic driver determination was based on a combination 
of clinical testing and/or laboratory testing from the cohorts as previ-
ously published (see Supplementary Table S15, column K). Cases in 
which mutational status was unknown were removed from analyses 
as appropriate.

Transcriptional identity of the validation cohort cases was determined 
by coclustering of microarray mRNA expression values of overlapping 
classifier genes (n = 249) of single cases with the complete RNA-seq 
cohort using Spearman correlation distance-based t-SNE, exactly as 
done for the RNA-seq cohort clustering. For overlapping genes, probe 
sets with highest specificity and selectivity (https://genecards.weizmann.
ac.il/geneannot/index.shtml) were used, omitting probe sets recogniz-
ing more than one gene. For robustness assessment of transcriptional 
identity calls, we made use of the stochastic initial seeding of the t-SNE 
algorithm by performing 10 clustering repeats. Cases with clustering 
inconsistency in more than 2 of the 10 runs (25/443 cases, 5.6%) were 
not assigned a transcriptional identity label. Transcriptional identity of 
95% (41/43) of the microarray profiled cases also present in the RNA-seq 
cohort were identical. In 9 of 327 cases, the transcriptional identity calls 
were inconsistent with oncogenic driver determination (2.8%), similar to 
the discovery cohort.

Transcriptional identity was further confirmed by clustering of 
the validation cohort using a classifier derived from the microar-
ray expression values only. For this, the batch effect of AML02 and 
Rotterdam cohort expression values was removed using the ComBat 
function of the sva R package (Supplementary Fig. S11A). Clustering 
visualization was done by t-SNE using a 350-gene set consisting of 
the highest variant probe sets by least median square (Supplementary 
Fig. S11B), where only probe sets recognizing single genes were used 
and sex-specific and hemoglobin genes were removed.

pLSC6 scores of the validation cohort were calculated as pre-
viously described using log2 intensity values of Affimetrix probe 
sets 209543_s_at (CD34), 220668_s_at (DNMT3B), 220377_at 
(FAM30A), 212070_at (GPR56), 203373_at (SOC2), and 206310_at 

(SPINK2; ref. 19). Of the 44 cases with both microarray and RNA-seq 
data, pLSC6 values were highly correlated (r = 0.82). pLSC6 catego-
ries of low, medium, and high were determined by matched RNA-seq 
expression value pLSC6 quantiles (0%, 66.21%, 96.78%, and 100%). 
Eighty-two percent of overlapping cases (36/44) were assigned the 
same pLSC6 category using this method.

In the validation cohort, association between transcriptional identity, 
oncogenic driver, pLSC6 score, and overall survival was modeled using 
a Cox regression implementation in the global test, accounting for 
interactions between the three variables (Supplementary Table S19). 
Two hundred ninety-three cases had overall survival data and could be 
assigned both a transcriptional identity and an oncogenic driver label. 
Sparse transcriptional identities (3 or fewer cases) were removed, leaving 
8 transcriptional identity and 14 oncogenic driver covariates, whereas 
pLSC6 was used as a continuous variable. Main covariates contributing 
(cases >1) to the global association are reported (Supplementary Table 
S20), with pLSC6 categorized as medium/high versus low. Because 
pLSC6 was developed using the AML02 validation cohort, association 
with overall survival was independently assessed excluding the AML02 
cases from the validation cohort (Supplementary Fig. S19).

AMTL Five-Gene Classifier
A five-gene classifier to identify the AMTL subtype was developed 

as follows. First, using the RNA-seq cohort, the expression of each 
gene was summarized by computing median expression for each 
transcriptional subgroup and using the Wilcoxon test to compare 
medians across each pair of subgroups. The genes for which AMTL 
had the greatest or least median expression were selected and then 
ranked by the maximum of the Wilcoxon test P values comparing 
AMTL to other subgroups. The top 14 genes in this list were then 
considered as candidate predictor variables for a logistic regression 
predicting the AMTL versus non-AMTL class using the bestglm  
procedure in R. The bestglm procedure defined the model as 
logit(Prob(AMTL)) = −0.78 + 1.01 × CD3G −0.85 × x COCH-1.20 
SLC35D2 + 0.81 SPTLC3 – 0.93 TOR4A (Supplementary Table S27). 
The model classified AMTL with an AUC of 0.977. In 1,000 rounds of 
leave-out 10% cross-validation, this model building procedure (median 
calculation, pairwise Wilcoxon tests, bestglm) achieved an average 
AUC of 0.973, with a range of 0.952 to 0.983. See Supplementary Table 
S27 for AMTL logistic regression classifier model terms, estimates, 
confidence intervals, and P values. We then went on to validate this 
five-gene classifier in our validation cohort. The Affymetrix microar-
rays (U133 v2.0) included six probe sets that measured the expression 
of the five genes in the classifier (gene symbol, probe set IDs: COCH, 
205229_s_at; CD3G, 206804_at; SLC35D2, 213082_s_at; SLC35D2, 
213083_at; TOR4A, 219620_x_at; and SPTLC3, 220456_at).

A principal component analysis of the two probe sets measur-
ing SLC35D2 gave similar coefficients for 213082_s_at (0.74) and 
213083_at (0.67). Thus, for each subject, the expression of SLC35D2 
was computed as the simple arithmetic average of the expression of 
these two probe sets. The other four genes were measured by one 
probe set each. For each subject, a score was computed as the dot 
product of the microarray expression of the five genes with the coef-
ficients from the RNA-seq cohort’s logistic regression model. This 
score classified the AMTL/non-AMTL in the independent microarray 
cohort (those without RNA-seq data) with an AUC of 0.88.

RCU
For a given risk classification, censored event-time endpoint (such 

as EFS or overall survival), and cohort outcome data set, we defined 
and computed the RCU as follows: We computed the proportion of 
patients assigned to low-, intermediate-, and high-risk groups and the 
Kaplan–Meier estimates of outcome for each risk group (Fig. 4B and 
C; Supplementary Figs. S24 and S25). Then, for each observed event 
time, we plotted the utility curve as Kaplan–Meier survival estimate 
of the low-risk group versus that of the high-risk group (Fig. 4C; 
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Supplementary Fig. S26). An ideal utility curve is a flat line at y = 1; in 
this case, there is some time point at which the Kaplan–Meier estimate 
of high-risk patients is 0 and that of low-risk patients is 1. A utility 
curve along the line y = x could reasonably be obtained by completely 
random assignment of patients into low-risk or high-risk groups. The 
“outcome discrimination index” was defined and computed as twice 
the area above the line y = x and below the utility curve. The outcome 
discrimination index is 1 if the utility curve is ideal and 0 if the utility 
curve does not have any point above the line y = x that can be obtained 
by random risk classification assignments. We defined and com-
puted the “meaningful classification proportion” as the proportion 
of patients designated as high or low risk because intermediate risk 
typically designates a patient lacking definitive high-risk or low-risk 
characteristics (Fig. 4C; Supplementary Fig. S27). Finally, the RCU 
was defined and computed as the product of the meaningful clas-
sification proportion and the outcome discrimination index (Fig. 4C; 
Supplementary Fig. S27). The RCU equals 1 if and only if all patients 
have a meaningful classification and the outcome discrimination is 1.

A bootstrap procedure was used to quantify the statistical variabil-
ity and significance of comparisons of RCU of four risk classification 
schemes. The RCU of each risk classification scheme was computed 
for the discovery cohort, and 100,000 bootstraps of the discovery 
cohort, the validation cohort, and the combined cohort was deter-
mined (Supplementary Table S25).
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