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Abstract: Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to mor-
phology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over
recent decades, outcomes have greatly improved, although survival rates remain around 70% and the
relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication
of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification
of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this
article is to provide an updated review of cytogenetics in pediatric AML, describing well-known
WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We
describe the main chromosomal abnormalities, their frequency according to age and AML subtypes,
and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and
on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent
hematological and cytogenetic recommendations.

Keywords: cytogenetics; pediatrics; acute myeloid leukemia; genomics; risk-adapted therapy; thera-
peutic trials; children hematological malignancies; karyotype; FISH; acute megakaryoblastic leukemia;
infant leukemia

1. Introduction

Acute leukemia (AL) is the most frequent cancer in children. The majority of cases
comprise acute lymphoblastic leukemia (ALL), whereas only 15–20% have a diagnosis of
acute myeloid leukemia (AML). Pediatric AML is thus a rare disease, with an incidence of
seven cases per million children younger than 15 years, affecting children with a median
age of 6 years [1,2]. Children have better outcomes than adults because of the more frequent
presence of good prognostic genetic features and higher tolerance of intensive treatment.
Complete remission (CR) is now achieved in 90% of cases, whereas event-free (EFS) and
overall survival (OS) rates are commonly around 50% and 70%, respectively, due to the high
rate of relapse. Moreover, short and long term therapy-related toxicities have to be taken
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into consideration, with a persistent high risk of death due to intensive therapy (4–10%)
and significant long term side-effects of certain chemotherapies (anthracycline) [1–8].

Although in adults a large proportion of AML cases are secondary to a previous
myelodysplasia (MDS) or previous exposure to radio- or chemotherapy (therapy-related
AML), in children, 95% of cases represent de novo AML. However, rare cases of pedi-
atric AML have an underlying constitutional genetic predisposition either in the context
of a phenotypically apparent syndrome, such as Down syndrome, or as a more subtle
familial syndrome [9,10]. AML in these inherited situations may be preceded or not by
a myelodysplastic syndrome. Thus, detection is crucial in order to adapt the treatment,
because some may be sensitive to chemo- or radiotherapy. Additionally, the risk of a bone
marrow allograft with an affected family member needs to be avoided [10].

Chromosomal abnormalities are recognized as an important factor in diagnosis and
as an independent prognostic indicator. AML cells (blast cells) are malignant myeloid
progenitor cells that fail to differentiate, proliferating in the bone marrow and invading
peripheral blood and other organs, such as the central nervous system. Clonal, acquired, so-
matic cytogenetic abnormalities (CAs) are detected in 75 to 80% of pediatric AML cases [1].
They are either primary, detected in all cytogenetically abnormal cells, or secondary, being
present in one or multiple subclones, indicating clonal evolution. Primary CAs are closely
associated with morphological subtypes. In 1976, the French–American–British (FAB) coop-
erative group proposed an AML classification based on morphological and cytochemical
criteria, dependent on cell lineage and the degree of differentiation; for example, in the re-
vised 1985 FAB classification, acute myelomonocytic leukemia with abnormal eosinophils,
M4eo [11,12]. FAB classification has been regularly updated and continues to be used,
because it is available on the day of diagnosis, which may assist in the search for a specific
FAB subtype CA, such as the inversion of chromosome 16, inv(16)(p13q22), in a M4Eo
AML [11,12]. At the end of the 1990s, the World Health Organisation (WHO) proposed a
consensual extended classification based on clinical, morphological, immunophenotypical,
cytogenetic and molecular characteristics, although the majority of the categories remained
closely aligned to the FAB subgroups [13–15]. The WHO classification is regularly updated,
taking into consideration those molecular abnormalities resulting from the cytogenetic
abnormalities; for example, AML M4Eo/inv(16)(p13q22) is now referred to as AML with
inv(16)(p13q22);CBFB-MYH11 [14]. Such molecular abnormalities, immunophenotypic
features and recurrent mutations found in AML provide powerful markers for the detection
of minimal (measurable) residual disease (MRD), which is used as a prognostic marker in
current AML treatment trials [2]. Furthermore, the CD33 antigen characteristic of AML is
also a target for immunotherapy in some current AML trials [16–18].

One significant AML subtype, acute promyelocytic leukemia (APL), M3-M3v/t(15;17)
(q24;q21), now referred to as APL with PML-RARA, can be cured by treatment based on
a vitamin A derivative (ATRA) and arsenic trioxide (ATO), within specific APL proto-
cols [19,20].

Initial risk stratifications for treatment in most AML therapeutic protocols are based on
chromosomal and molecular abnormalities of the leukemic cells. Overall, three prognostic
categories are distinguished: good (favorable), intermediate and adverse (poor). The
definition of standard-risk may be misleading because it is applied either to favorable
(non-high-risk) or to intermediate risk groups, dependent on the therapeutic protocol [2].

In terms of clinical impact, adult classification systems, such as those defined by
ELN, cannot be completely transferred to the classification of childhood AML, because the
cytogenetic (and genomic) landscapes of pediatric and adult AML and the cytogenetic risk
associations are different according to age [1,8,21–23].

The most frequent cytogenetic abnormalities in pediatric AML are balanced chromo-
somal rearrangements, leading to the formation of chimeric fusion genes, only some of
which are also found in adults [24]. Among them, core binding factor (CBF) leukemias,
represented by t(8;21)(q22;q22)/RUNX1-RUNX1T1 and inv(16)(p13q22)/CBFB-MYH11,
are associated with a good prognosis, whereas 11q23/KMT2A (MLL) rearrangements are
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associated with an intermediate or adverse prognosis, depending on the KMT2A partner
gene involved. In rare cases, such as inv(3)(q21q26), the balanced rearrangement leads to a
positional effect with the relocation of enhancer sequences to the vicinity of a protoonco-
gene, whose expression becomes upregulated [25,26]. Unbalanced abnormalities, such as
monosomies of chromosomes 5 and 7, are less frequent in children, but they are associated
with a poor outcome, as observed in adults [1].

Age is an important factor among children, as indicated by the age-specific FAB/WHO
subtypes. Infant AML was historically defined as AML occurring in children under 1 year
of age, but it has now been extended to include all children under 2 years, because they
share the same clinical and biological profiles [27]. For example, they include a higher
proportion of acute megakaryoblastic leukemia (AMKL, M7), whereas certain cytogenetic
abnormalities are exclusively identified in this age group, such as t(1;22)(p13;q13)/RBM15-
MKL1 [1,4,22,28].

Cytogenetic analysis complemented by FISH (see graphical abstract) continues to play an
important role in the diagnosis of AML, providing a rapid, global genome analysis, using FISH
for the detection of cryptic chromosomal rearrangements, such as t(5;11)(q35;p15)/NUP98-
NSD1 [29–33]. In addition, classical chromosomal rearrangements can appear as variant
“masked” forms, involving a third chromosome or as a cryptic insertion, requiring confir-
mation by FISH [34]. Alternatively, the detection of chimeric fusion transcripts by reverse
transcriptase polymerase chain reaction (RT-PCR) or real-time quantitative PCR (RQ-PCR)
may routinely be used. Furthermore, RQ-PCR enables the subsequent detection of MRD
with strong clinical value in current therapeutic protocols [1,2].

Other molecular cytogenetic techniques, such as CGH or SNP-array, are used for
the detection of unbalanced cytogenetic abnormalities (gain or loss of material) [35]. Fi-
nally, the detection of mutations of prognosis significance, such as FLT3-ITD, NPM1 and
CEBPA, particularly in cases with normal karyotypes, is mandatory in current therapeutic
protocols [2,36].

Here, we provide an updated review of cytogenetic abnormalities in pediatric AML.
We describe the main chromosomal rearrangements (balanced and unbalanced, primary
and secondary), their frequency according to age and AML subtypes, and their prog-
nostic significance within current therapeutic protocols. We focus on de novo AML and
cytogenetic diagnosis based on the most recent hematological and cytogenetic recommen-
dations [1,2,31,32,37,38].

2. Cytogenetic Subgroups

Among recurrent CAs we can considerer balanced CAs, like translocations and inver-
sions, and unbalanced CAs, like monosomies, trisomies or deletions (Table 1, Figure 1).
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Table 1. Main cytogenetic subgroups in pediatric AML.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Childhood AML

Median Age (Y)
(Range)

Special Features (Age,
FAB, Phenotype,

Treatment)
Secondary CA

Secondary
Molecular

Abnormalities
Risk

Category References

BALANCED CA
APL

t(15;17)(q24;q21) PML-RARA 6–10% 12
(1–18)

M3 and M3v,
Emergency (DIVC),

Specific APL treatment
(ATRA, ATO)

tri 8, del(9q),
ider(17)(q10) FLT3-ITD Favorable [20,39]

CBF leukemias 20–25%

t(8;21)(q22;q22) RUNX1-RUNX1T1 12–15% 8

M2, blasts with single
and thin Auer rods,
dysgranulopoiesis,

CD19+, CD56+

loss of X or Y,
del(9q), tri 8, del(7q),

tri 4

KIT, RAS, FLT3-ITD,
FLT3-TKD, ASXL1/2,

RAD21
Favorable [1,40–43]

inv(16)(p13q22)/
t(16;16)(p13;q22) CBFB-MYH11 5–9% 9 M4eo tri 22, del(7q), tri 8 KIT, RAS, FLT3-TKD,

FLT3-ITD Favorable [1,40–43]

11q23/KMT2Ar KMT2A with multiple
partners 16–21% 2.2

(0–18) M4 and M5, infants tri 8
High EVI1

expression, few
mutations

Adverse or
Intermediate [44–46]

t(9;11)(p22;q23) KMT2A-AF9(MLLT3) 6–9% 2.6 Intermediate [44–46]

t(11;19)(q23;p13.1) KMT2A-ELL 1–2% 4.6 Intermediate [44–46]

t(11;19)(q23;p13.3) KMT2A-ENL(MLLT1) 1% 7.1 Intermediate [44–46]

t(10;11)(p12;q23)/
ins(10;11) (p12;q23q13) *

KMT2A-
AF10(MLLT10)

*
2–3% 1.3 Adverse [44–46]

t(6;11)(q27;q23) KMT2A-AF6(MLLT4) 1–2% 12.4 Adverse [44–46]

11p15/NUP98r NUP98 with
multiple partners 3–5% 11

(1.3–18) Adverse [36,47,48]

t(5;11)(q35;p15) ** NUP98-NSD1 3–4% 10.4
(1.2–19.4)

M4,M5
71–77% of NUP98r

10–16% of NK
tri 8, del(5q), CK FLT3-ITD, WT1mut Adverse [36,46,47,49–51]

t(11;12)(p15;p13) ** NUP98-KMD5A 1–2% 3.2
(0.01–18.5)

10–30% of NUP98r
34% M7, 10% of M7

CK (numerous
numerical and
structural CA)

Low frequency of
mutations Adverse [47,48,52]

12p13
abnormalities

NUP98-KMD5A
del(12p)

ETV6 (12p13.1)
4% Adverse [22,28]

t(7;12)(q36;p13) ** ETV6; MNX1 1% 0.5 y
(0.2–2.3)

Only infants
(4% of infants) tri 19 unknown Adverse [53]

Rare other
balanced CA
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Table 1. Cont.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Childhood AML

Median Age (Y)
(Range)

Special Features (Age,
FAB, Phenotype,

Treatment)
Secondary CA

Secondary
Molecular

Abnormalities
Risk

Category References

t(10;11)(p12;q14) PICALM-MLLT10 <1% older children
Extramedullary

disease, granulocytic
sarcoma, CD7+

tri 4, tri 19 Intermediate [46,50,54]

inv(3)(q21q26.2)/
t(3;3)(q21;q26.2)

GATA2;
EVI1(MECOM) 2% 3

(2–18)
Dysmyelopoiesis and
platelet abnormalities mon 7 Adverse [1,22,24]

t(3;5)(q25;q35) NPM1-MLF1 <0.5% 3.5
(2–13) M2, M4, M6, dysplasia rare unknown Intermediate [46,50,55]

t(6;9)(p22;q34) DEK-NUP214 1–2% 12
(2.6–20.4)

M2/M4, dysplasia,
basophilia.

No infant cases
loss of Y, tri 8, tri 13 FLT3-ITD Adverse [56,57]

t(8;16)(p11;p13) KAT6A-CREBBP <1% 1.2
(0–16)

Peak in infants,
spontaneous remission
in a subset of neonates,

DIVC, M4–M5,
erythrophagocytosis

tri 1q, del(5q),
del(7q), del(9q)

High
HOXA9/HOXA10

expression
Intermediate [50,58]

t(16;21)(p11;q22) FUS-ERG 0.4% 8.5
(2.0–17.5) no tri 8,

tri 10 Adverse [50,59]

t(16;21)(q24;q22) RUNX1-CBFA2T3 0.2% 6.8
(1.0–17) M1/M2, t-AML tri 8, loss of Y

Gene expression
profile close to

RUNX1/RUNX1T1
Favorable? [50,59]

t(1;22)(p13;q13) RBM15-MKL1 0.3% 0.7
(0.1–2.7)

Only M7 (5–10% of M7)
Hepatosplenomegaly,

fibrosis

Mainly no ACA, HD
karyotypes Intermediate [48,60–64]

inv(16)(p13q24) ** CBFA2T3-GLIS2 2–3% 1.5
(0.3–17.2)

Infants, 20% of
non-DS-AMKL,
extramedullary

disease, CD56++

Low HD karyotypes,
tri 3, tri 21 Few mutations Adverse [46,48,50,64–67]

t(9;22)(q34;q11) BCR-ABL1 0.6%
Exclude CML-BP

or MPAL
mBCR

Sensitivity to TKI

Association with
inv(16)/CBFB-

MYH11
Adverse [1,14,22]

UNBALANCED CA

Monosomy 5, del(5q) / 1.2% 12.5
(0.3–20.7) M0 del(17p), CK Adverse [7,22,28,68]

Monosomy 7 *** / 3% 7.2
(0–18)

Exclude a primary CA
and a predisposition
syndrome (GATA2)

/ Adverse [22,28,69]
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Table 1. Cont.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Childhood AML

Median Age (Y)
(Range)

Special Features (Age,
FAB, Phenotype,

Treatment)
Secondary CA

Secondary
Molecular

Abnormalities
Risk

Category References

del(7q) *** / 3% 7.6
(0–18)

Exclude a primary
abnormality and a

predisposition
syndrome

/ intermediate [22,28,69]

Trisomy 8 *** / 10–14% 10.1
(0–18)

Mainly a secondary
abnormality Search for

a primary CA
/ FLT3-ITD Discussed [70]

Hyperdiploidy
(48~49–65 chr.)

tri 8, tri 21, tri 19, tri 6,
. . . . 11% 2

(0–17)
AMKL, infants, Search

for a primary CA / / No significance [56,71]

Complex
karyotype ƒ / 8–17% 3

(0–18)
Exclude a

primary CA / / Discussed [5,6,22,28]

Monosomal
karyotype ƒƒ / 3–5% 3.6

(0–17)
Exclude a

CBF leukemia / /
Discussed/

Adverse even after
exclusion of mon 7

[5,6]

Normal
Karyotype

Normal
karyotype / 20–26% 8.8

(0–18)
Search for

a cryptic CA

Search for
prognostic

mutations: FLT3-ITD,
CEBPAdm, NPM1

According to
cryptic CA or to

mutations
[7,22,28,36,46]

NOTE 1. Risk categories were defined according to Harrison [22] and Von Neuhoff 2010 [28]: Favorable, Intermediate and Adverse correspond to 5-year survival >70%, 50–70% and <50%, respectively. NOTE 2.
Infants: children under 2 years. Abbreviations: APL: acute promyelocytic leukemia; CA: cytogenetic abnormality; CK: complex karyotype (at least 3 CAs); CML-BP: chronic myeloid leukemia blast phase; DIVC:
disseminated intravascular coagulation; HD: hyperdiploid karyotype; mBCR: minor BCR; MPAL: mixed phenotype acute leukemia, mon: monosomy; r: rearrangement; TKI: tyrosine kinase inhibitors; tri: trisomy.
* A complex rearrangement or a cryptic insertion is necessary to create a KMT2A-MLLT10 fusion gene (see text); thus, FISH with a KMT2A probe is mandatory. ** Cryptic abnormality requiring molecular methods
for detection: FISH and/or PCR-based method. *** As a primary abnormality. ƒ At least 3 independent CAs in the absence of a WHO-designated recurring translocation or inversion. Some authors include in the
definition “with at least one structural abnormality” [5,28]. ƒƒ Loss of at least two autosomes or loss of one autosome and the presence of a structural abnormality (excluding mar or ring), excluding CBF AML.
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2.1. Balanced Cytogenetic Abnormalities

Recurrent balanced genomic rearrangements are predominant in pediatric AML.
Downstream consequences of these rearrangements may be: (1) the formation of a fusion
gene, which encodes an oncogenic chimeric protein, or (2) more rarely, the overexpression
of a gene implicated in self-renewal, cellular cycle or another major cellular function, by
relocation to the vicinity of enhancer sequences (Table 1).

2.1.1. Acute Promyelocytic Leukemia (APL), M3-M3v/t(15;17)(q24;q21), Now Referred to
as APL with PML-RARA

Acute promyelocytic leukemia (APL) represents around 5 to 10% of childhood AML,
although the frequency varies between countries and ethnicities, being more prevalent in
Hispanic populations. APL is very rare in infants, with a median age in children of about
12 years [1,2,72,73]. Most cases occur de novo, although therapy-related cases, arising
secondary to exposure to alkylating agents, topoisomerase 2 inhibitors, or radiation, have
been described mainly in adults but also in children [74]. APL represents the M3/M3v
FAB AML subtype and is characterized by the presence of the PML-RARA fusion gene,
classically due to the translocation, t(15;17)(q24;q21). The resulting chimeric protein induces
a blockade in granulocytic differentiation at the promyelocytic stage [75]. Essentially, it is
an aggressive leukemia with a high rate of disseminated intravascular coagulation (DIVC),
possibly leading to fatal hemorrhages; thus, APL constitutes an emergency at diagnosis,
even with low WBC counts [1,20]. However, the existence of an effective targeted therapy,
applied in a timely manner, changes it to a good risk AML subtype. Indeed, all-trans
retinoic acid (ATRA) and/or ATO induce granulocyte terminal differentiation and clinical
remission. APL cases are now included in specific APL protocols with a very high cure
rate [19,20,76,77]. Of note, 5–10% of APL/PML-RARA cases present with a cryptic insertion,
ins(15;17) or ins(17;15), leading to the formation of the PML-RARA fusion gene. In these
cases, FISH, using appropriate probes covering the 5′ part of PML and the 3′ part of RARA,
is very useful for rapid emergency diagnosis [34]. On the other hand, RT-PCR or RQ-PCR
is always run in parallel in M3/M3v cases and, in practice, will confirm cytogenetic results
by demonstrating the presence of a PML-RARA transcript. Furthermore, RQ-PCR enables
subsequent quantification of MRD [20]. Additional chromosomal abnormalities (ACA)
are found in 30% of APL at diagnosis, the most frequent being trisomy 8 or the gain of
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8q, del(9q) and ider(17)(q10)t(15;17) leading to TP53/17p deletion. The prognostic value
of these ACAs is unclear. A recent study comprising pediatric and adult cases treated
with ATRA and chemotherapy found a higher risk of relapse in cases with more than two
ACAs [78], a feature reminiscent of the less favorable prognosis observed in such cases
in an adult ATO-based trial [79]. As commented in the same issue by Grimwade and
Dillon [80], the prognostic relevance in cases with complex karyotypes could be related to
the high frequency of 17p deletions at the karyotype level in this adult series. Similarly,
the prognosis value of FLT3-ITD or FLT3 mutations, present in about half of APL cases,
remains unknown in the context of ATRA and/or ATO-based therapies, which may be
correlated with a WBC higher than 10 × 109/L, which is a well-established poor risk
prognosis factor [20,34,73,80–82].

Notably, AML cases with RARA partners other than PML have been described.
These cases present with a cytological profile similar to AML M3/M3v: AML with
NPM1/t(5;17)(q35;q21), NUMA1/t(11;17)(q13;q21), PLZF/t(11;17)(q23;q21), PRKAR1A/del
(17)(q21;q24)/t(17;17)(q21;q24), FIP1L1/t(4;17)(q12;q21), BCOR/t(X;17)(p11;q12), der(17)
and t(3;17)(p25;q21). It is important to identify these very rare cases of “APL-like” leukemia
because some of them, such as those involving PLZF, are resistant to treatment with ATRA
or ATO, thus warranting a standard AML protocol [73,81].

2.1.2. Core Binding Factor AML

Acute myeloid leukemia with t(8;21)(q22;q22)/RUNX1-RUNX1T1 and inv(16)(p13q22)
or t(16;16)(p13;q22)/CBFB-MYH11 are referred to as core binding factor (CBF) leukemia.
They represent the largest pediatric AML subgroup, accounting for around 25% of cases,
being rare in infants, both with a median age of 8–9 years among children [1,27]. They
are detected at a lower frequency among young adult AML [83]. Both rearrangements
lead to the disruption of CBF genes involved in the CBF complex, which plays a ma-
jor role in hematopoiesis. Both fusion genes provide excellent markers for molecular
MRD monitoring.

Both rearrangements block myeloid differentiation, but alone they are insufficient to
induce overt leukemia. As a result, additional cytogenetic abnormalities (ACA) and/or
somatic mutations are present in all cases, with a median of seven mutations per case,
mostly seen in those genes activating tyrosine kinase signaling such as KIT, N/KRAS and
FLT3 (mainly FLT3-ITD and -TKD mutations) [40,41,84–86]. In contrast to inv(16) AML,
t(8;21) AML presents with a high frequency of mutations in genes regulating chromatin
conformation (epigenetic modifiers) such as ASXL1 and ASXL2 or encoding members of
the cohesin complex such as RAD21 and SMC1A [41,42].

Altogether, CBF leukemias are associated with a relatively good prognosis with an overall
survival rate >80%, although the incidence of relapse remains around 30% [1,16,22,28,36].

The translocation t(8;21)(q22;q22) results in the fusion of 5’sequences of RUNX1 (21q22)
and 3’ sequences RUNX1T1 (8q22), giving rise to the RUNX1-RUNX1T1 functional chimeric
gene [85]. It occurs in 12–15% of childhood AML, and in 80% of cases it is associated with
the FAB classification AML M2 subtype [1,16,22,28,36]. Typically, blasts present with single
and thin Auer bodies and dysgranulopoiesis. Moreover, the phenotype frequently shows
aberrant expression of CD19 and CD56, allowing accurate MRD monitoring [87]. In the
largest international study comprising 835 t(8;21) pediatric patients, ACAs were found in
68% of cases: loss of X or Y chromosome (46%), del(9q) (12%), trisomy 8 (6%), abnormal(7q)
(5%), trisomy 4 (3%), and, in 25% of cases, at least two of these ACA were present [40].
These abnormalities have been confirmed and common deleted regions (CDRs) were
refined by CGH or SNP array analyses, e.g., del(7)(q35q36.1) and del(9)(q21.2q21.3) for
abnormal 7q and del(9q), respectively [35,43]. Classically, the presence of these ACAs does
not modify the good prognosis associated with t(8;21) AML [22]. However, in the largest
international retrospective study, del(9q) has been significantly associated with a lower CR
rate, without impacting EFS and OS, whereas trisomy 4 cases were significantly associated
with a higher cumulative incidence of relapse (CIR) and lower EFS and OS [40]. Of note,



Genes 2021, 12, 924 9 of 32

the KIT gene is located at 4q11 and trisomy 4 cases are associated with a higher rate of KIT
mutations [40]. Moreover, a high KIT variant allele frequency (VAF) and co-occurrence
of tyrosine kinase pathway mutations with mutations in epigenetic modifying or cohesin
genes have been associated with a higher CIR in t(8;21) AML, and thus a less favorable
prognosis [42].

As described in other types of AML, cryptic cases occur in around 10% of AML/RUNX1-
RUNX1T1 as variant translocations involving a third chromosome or as cryptic insertions
confirmed by accurate FISH detection [88].

The inv(16)(p13q22) and the rare translocation t(16;16)(p13;q22) result in the fusion
of 5’sequences of CBFB (16q22) and 3’ sequences of MYH11 (16p13), leading to a CBFB-
MYH11 functional chimeric gene [84]. They account for 7–11% of pediatric AML and
are typically associated with the AML M4 with abnormal eosinophils (M4 Eo) FAB sub-
type [1,16,22,28,36]. Thus, a (myelo)monocytic leukemia with eosinophils presenting with
purple granulations is an important pointer to this rearrangement even though it may
also occur in classical AML M4 or AML M5 subtypes. This abnormality is sometimes
difficult to identify by karyotyping; thus, specific FISH and/or PCR is warranted in order
to confirm its presence, especially in M4 Eo or cases with trisomy 22. Indeed, trisomy 22 is
a characteristic and frequent ACA, other frequent ACA include del(7q) and trisomy 8 [43].
CGH array analyses have refined the del(7q) CDR as del(7)(q35q36.1) [35,43].

The prognostic value of ACA in CBF leukemia is still debated. Trisomy 8, which
is twice more frequent in inv(16) than in t(8;21), has recently been found as the genetic
aberration with the strongest negative impact on prognosis in a large adult CBF AML
study [89], confirming the previous results in inv(16) CBF adult AML [90]. Altogether, CBF
leukemia remains a favorable risk group and the prognostic value of secondary genetic
abnormalities within this group warrants confirmation on large prospective therapeutic
trials [2].

2.1.3. KMT2A/11q23 Rearrangements

Rearrangements involving KMT2A (KMT2Ar, previously mixed lineage leukemia,
MLL) gene located at 11q23.3, account for 15–20% of pediatric AML [1,44]. They are more
frequently associated with monocytic AML (FAB M4 or M5 in 73% of KMT2Ar cases), but
can also be found in M0 (3%), M1 (6%) and M7 (3%) subtypes [44]. KMT2Ar AML are more
frequent in infant AML, accounting for 47–55% of children under 2 years of age; thus, the
median age in childhood AML is 2.2 years [27,44].

KMT2A encodes a protein of the nuclear structure involved in the regulation of
transcription and epigenetic modulations. For each rearrangement, the 5’ part of KMT2A
fuses with the 3’ part of a partner gene, leading to a chimeric functional gene located, in
classical translocations, on the derivative chromosome 11, der(11). KMT2Ar is also found in
ALL, and, between both types of acute leukemia, more than one hundred KMT2A partners
have been identified [45]. MLLT3(AF9) (9p21.3) is the most common partner, representing
46% of all pediatric KMT2Ar AML. It is the only KMT2Ar AML identified in the current
WHO classification, as AML with t(9;11)(p21.3;q23.3); KMT2A-MLLT3 [14]. This subtype is
associated with an intermediate prognosis, as is also the case for t(11;19)(q23;p13) either
with ELL (19p13.1) or MLLT1(ENL) (19p13.3) partners, which account for 8% and 6% of
KMT2Ar cases, respectively. Other KMT2Ar partners are rare, such as MLLT6 (AF17) (17q21)
and SEPT6 (Xq24) [44]. Exceptionally, t(1;11)(q21;q23); KMT2A-MLLT11(AF1Q) AML has
been associated with a good prognosis [44]. However, due to the scarcity of these cases,
this association has not been confirmed [22,28,36].

In contrast, a poor prognosis has been assigned to KMT2Ar cases involving MLLT10
(AF10) (10p12), ABI1 (10p11.2) and MLLT4 (AF6) (6q27), accounting for 16%, 2% and 6% of
KMT2Ar cases, respectively [1,44]. Moreover, the fusion partner distribution is variable
from one age group to another. MLLT10 (10p12) and ABI1 (10p11.2) are prevalent in infant
AML, whereas MLLT4 (6q27) is more frequent in older children (median age 12 years) [44].
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In the largest international study to date, additional cytogenetic abnormalities (ACAs)
were found in about half of KMT2Ar AML (47%), mainly as chromosomal gains, trisomy 8
being most prevalent (18% of total cases) followed by trisomies 19, 6 and 21, each found
in 5% of total cases. Cases with at least two ACAs accounted for 26% of cases. This study
confirmed the prognostic value of the different KMT2Ar partner genes and found that
trisomies 8 and 19 were predictive of a better and a worse prognosis, respectively [58].
Unbalanced CAs have been confirmed by SNP array analyses [35].

KMT2Ar AML present with a low mutation burden and a characteristic gene expres-
sion and methylation profile [46]. Interestingly, the EVI1 protooncogene is overexpressed
in about 40% of KMT2Ar AML, and this overexpression may worsen the prognosis of
KMT2A/MLLT3 cases [50,91].

The numerous KMT2A partners indicates the use of a KMT2A break-apart FISH probe
for initial diagnosis, complemented by specific probes for the identification of those partner
genes with an important prognosis impact. Multiplex PCR may be troublesome for use
in diagnosis, because sometimes breakpoints require cloning/sequencing [45]. Indeed,
these KMT2Ar abnormalities may be difficult to detect by karyotyping, especially those
involving MLLT10 (10p12), because this gene is oriented telomere to centromere. Thus, in
order to create a functional chimeric KMT2A-MLLT10, a simple reciprocal translocation
between chromosomes 10 and 11 is not sufficient, and other mechanisms, such as inversion
or insertion, are necessary to correctly orientate the gene segments. Thus, accurate FISH
analysis, using a break-apart probe covering KMT2A and/or a fusion probe covering both
genes, is recommended alongside PCR analyses for accurate diagnosis of this poor progno-
sis rearrangement [92]. Moreover, t(10;11)(p12;q23)/KMT2A-MLLT10 can closely resemble
t(10;11)(p12;q14)/PICALM/MLLT10, a rare abnormality currently assigned to an intermedi-
ate risk group [54]. FISH analysis has revealed that t(10;11)(p12;q14)/KMT2A-MLLT10 are
in fact complex rearrangements, such as der(10)t(10;11)(p12;q14)inv(11)(q14q23), in which
the KMT2A gene is disrupted by an 11q inversion on the derivative 10 chromosome, in
order to produce an in-frame KMT2A-MLLT10 fusion.

In fact, even in classical t(v;11q23)/KMT2A translocations, FISH diagnosis may be
difficult, because the 3’part of the KMT2A gene, which is usually translocated to the partner
chromosome, can be deleted in about 10% of cases [93]. Finally, some partner genes have
been identified on the 11q chromosome such as the CBL gene located at 11q23.3, telomeric
of KMT2A, and in such cryptic deletion, del(11)(q23.3q23.3) cases, FISH analysis provides
evidence of deletion of the 3’part of the KMT2A gene [45,94].

2.1.4. 11p15/NUP98 Rearrangements

The 11p15 rearrangements involving nucleoporin 98Kd (NUP98) are rare, occurring
in 3–5% of pediatric AML and rare cases in young adults [36,47,50,51,95,96]. They are a
relatively biological and clinical homogeneous group with a poor prognosis which can be
overcome by allogeneic hematopoietic stem cell transplantation (HSCT) [95]. This poor
risk is mainly due to a high rate of induction failure [97].

Multiple NUP98 partners have been described, but the most frequent is the nuclear
receptor-binding SET domain protein 1 (NSD1) gene (5q35), accounting for about 75%
of NUP98r pediatric cases. The chimeric protein, resulting from the fusion between the
5’part of NUP98 and the 3’part of NSD1, induces the self-renewal of myeloid stem cells
and enhances the expression of HOX genes [98]. This translocation, t(5;11)(q35;p15), must
systematically be screened for because it is a cryptic cytogenetic abnormality [29]. It is
found in 8 to 16% of pediatric AML, with apparently normal karyotype, but it may be
associated with non-specific CA, such as trisomy 8 [47,51,95]. NUP98-NSD1 leukemias are
frequently associated with FLT3 -ITD and/or WT1 mutations, which occur in about 80%
and 50% of cases, respectively, possibly adding to the poor prognosis associated with these
cases [36,49,95].

Among other NUP98 partners, the most frequent is KDM5A (JARID1A) at 12p13.3,
leading to an almost-cryptic cytogenetic abnormality, initially described in M7 pediatric
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AML) [52]. NUP98-KDM5A occurs in 2% of pediatric AML, mainly in the M7 subtype, and
is a poor prognosis marker with an overall survival rate of around 33% [96,99]. NUP98-
KDM5A accounts for 9–12% pediatric M7 and 12% of infant AML [27,48,63]. In contrast
to NUP98-NSD1, few additional mutations are found in association with NUP98-KDM5A,
suggesting that the fusion protein itself has a sufficient oncogenic effect [99]. Finally, NUP98
rearrangements occur with a high frequency, in around one-third of cases, with the rare
acute erythroid leukemia M6 subtype [99,100].

FISH, using a NUP98 break apart probe, is now widely used for diagnoses of NUP98r,
and metaphase FISH enables identification of the partner gene [47,95,101]. Of note, because
commercially available NUP98 probes are 5′ (upstream) and 3′ (downstream) flanking
probes, one has to be cautious in the interpretation of interphase FISH results and rather
allow a larger distance between 5′ and 3′ signals rather than a two-spot distance between
these signals.

2.1.5. 12p Abnormalities Including the Rare t(7;12)(q36;p13)/ETV6;MNX1

Abnormalities of the short arm of chromosome 12 (12p) and, more particularly, those
involving the KDM5A located at 12p13.3 (as a NUP98 partner described above) and the
ets variant 6 gene (ETV6), at 12p13.1, are found in 4% of cases and are associated with an
adverse prognosis [22,28].

The rare subtle (often cryptic translocation) t(7;12)(q36;p13) presents with a breakpoint
5′ of ETV6 and a variable breakpoint of proximal 7q (upstream) to MNX1 (7q36.3) (for a
review, see Espersen et al., 2018 [53]). It induces ectopic expression of the MNX1 (HLXB9)
homeobox transcription factor with the blockade of differentiation and senescence in
hematopoietic progenitors and stem cells. Indeed, an ETV6-MNX1 transcript has never
been found, and the reciprocal MNX1-ETV6 is only observed in 50% of cases [102,103].
Therefore, FISH analysis provides the most powerful tool for diagnosis. However, due
to the wide variability of 7q breakpoints, the existence of deletions on the derivative 7q,
three-way translocations and cryptic insertions, and the choice of accurate FISH probes
is crucial [53,104,105]. To date, t(7;12)(q36;p13)/ETV6-MNX1 has only been described in
infants (under 2 years old) with an incidence of 4.3% in infants and 1.1% in pediatric AML,
as reported in a recent review [53]. ACAs are present in 86% of cases, and all cases with
ACAs had trisomy 19 [53]. In the literature, a high rate of relapse has been reported (77%);
however, the salvage rate using HSCT is high [53]. Therefore, FISH screening for this poor
prognostic abnormality should be mandatory in infants under 2 years old, especially in
cases with trisomy 19 [4,31,38,105].

2.2. Rare Balanced Rearrangements
2.2.1. Inversion (3;3)(q21q26.2)/t(3;3)(q21;q26.2)/GATA2;MECOM (EVI1)

These abnormalities, sharing the same chromosomal breakpoints, are included in the
WHO 2016 classification as inversion, inv(3)(q21q26.2)/translocation, t(3;3)(q21;q26.2) with
involvement of GATA2 (3q21), and MECOM (EVI1) (3q26.2). Both rearrangements result in
repositioning of a distal enhancer of GATA2 to the vicinity of MECOM, thus resulting in
the overexpression of MECOM and silencing of GATA2 [25,26]. This abnormality is well
described in adult cases and characterized by an unusual normal or high platelet count,
dysmorphic platelets and megakaryocytes, with monosomy 7 as a frequent secondary
cytogenetic abnormality [106]. This poor prognostic abnormality occurs at a low frequency
(1–2%) in childhood AML, with a median age of 3 years [1,22,24]. An association between
central diabetes insipidus and AML with inv(3)(q21q26) and/or monosomy 7 has rarely
been described in children and adults; most cases present with both of these CAs [5,107].
The pathophysiological mechanisms underlying central diabetes insipidus in these patients
remain unclear, but could be related to abnormal platelets because most of the peripheral
ADH is platelet-bound; most of these cases have a documented response to a vasopressin
analog [107].
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2.2.2. Translocation (6;9)(p22;q34)/DEK-NUP214

The translocation t(6;9)(p22;q34) is a rare rearrangement occurring in 1–2% of child-
hood AML cases, mainly in older children with a median age of 12 years, with no infant
cases reported [1,57,108]. It leads to the fusion of the 5’part of the DEK gene located at 6p22,
encoding for a nuclear phosphoprotein, and the 3′ part of a nucleoporin gene, NUP214
(CAN) located at 9q34 [109]. It has been considered as a distinct entity of the WHO classifi-
cation since 2008. Classically, this abnormality is mainly in found in M2 or M4 AML FAB
subtypes, all presenting with myelodysplasic features, and in one-third of cases with mild
basophilia in the bone marrow [57,108]. ACAs are present in 19% of cases: mainly, a loss of
the Y chromosome and trisomies 8 and 13 [108]. FLT3-ITD is present in 40–70% of cases.
This abnormality is associated with a poor prognosis with high risk of initial treatment
resistance and high risk of relapse (CIR 57–64%). This poor outcome persists independent
of the presence of FLT3-ITD, but it may be improved by HSCT in the first CR [57,108].

2.2.3. Translocation t(3;5)(q25;q35)/NPM1-MLF1

Translocation t(3;5)(q25;q35), mainly described in young adults, is a rare entity (about
0.5% of AML) identified in AML with myelodysplastic features and M6 cases [110–112].
It produces a fusion of 5’ coding sequences of the nucleophosmin (NPM1) gene at 5q35
and the myelodysplasia/myeloid leukemia factor 1 (MLF1) gene on 3q25, producing
an NPM1-MLF1 in-frame chimeric gene [113]. Cases in children are extremely rare: a
recent review of the literature collected eight pediatric AML patients with a median age
of 3.5 years (range 2–13). Most patients were M2 or M4 with only one M6 case, mostly
with no ACAs [55]. Of note, only 3/8 cases were confirmed by FISH and/or RT-PCR. This
scarcity impairs the assignment of a precise prognosis value to these cases that are currently
classified as intermediate risk at diagnosis.

2.2.4. Translocation t(8;16)(p11;p13)/KAT6A-CREBBP

The translocation t(8;16)(p11;p13) is a rare entity leading to the fusion of the histone
acetyltranferase gene KAT6A (MYST3 or MOZ) at 8p11 with the CREBBP (CBP) gene at
16p13 [114]. In an international study, which collected 62 pediatric cases, the median age
was 1.2 years (range 0–16 years) with a high frequency of neonates (one-third of patients
were younger than 1 month old). Most cases were M4-M5 FAB subtype with a high rate of
hemophagocytosis, leukemia cutis, and disseminated intravascular coagulation (DIVC).
About half of cases presented with ACAs, but only a few were recurrent: trisomy 1q, del(9q),
trisomy 8, del(5q) and del(7q). No difference in prognosis was found when compared to an
unselected pediatric AML cohort. Interestingly, about one-third of neonates experienced a
spontaneous remission, and half of them remained in continuous remission [58,115].

2.2.5. t(16;21)(p11;q22)/FUS-ERG

The t(16;21)(p11;q22) leads to the in-frame fusion of the 5′ part of the FUS gene (16p11)
and the 3′ part of the ETS related gene, ERG (21q22) [116,117]. A recent international collab-
orative study has collected 31 cases of this rare abnormality [59]. These cases represented
0.5% of the COG AAML31 cohort and 0.3% of the BFM cohort. There were no infant cases;
the median age was 8.5 years (range 2.0–17.5 years) with no specific FAB subtype. Most
cases were de novo AML (2/31 were t-AML), and the prognosis was poor, with a CIR of
74% and a 4-year EFS of 7% (15% for allografted cases). ACAs were present in 71% of cases,
mainly described as “complex” karyotypes with at least two ACAs (32%); trisomy 8 (19%)
and, unexpectedly, trisomy 10 (13%) was prevalent.

2.2.6. t(16;21)(q24;q22)/RUNX1-CBFA2T3

The rare t(16;21)(q24;q22) leads to the in-frame fusion of the 5′ part of the RUNX1
gene (21q22) and the 3′ part of the CBFA2T3 gene (16q24.3) [118]. The same international
collaborative study mentioned above collected 23 cases [59]. These cases represented
0.3% of the COG AAML31 and 0.1% of the BFM cohorts. The median age was 6.8 years
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(range 1.0–17 years) and M1 and M2 FAB subtypes were significantly prevalent (76%). Of
note, as reported in adults but to a lesser extent, therapy-related cases were observed (22%
of cases). Overall, the outcomes were good, with a CIR of 0% and a 4-year EFS of 77%.
ACAs were present in 84% of cases, with trisomy 8 (42%) and loss of the Y chromosome
(43% of male patients) being prevalent. Their gene expression profile was closely related to
that the t(8;21)(q22;q22)RUNX1/RUNX1T1 cases which share the same 5′ RUNX1 part of
the fusion gene [59].

2.2.7. Translocation (1;22)(p13;q13)/RBM15-MLK1

The translocation t(1;22)(p13;q13) is a very rare abnormality (0.3% of pediatric AML)
included in the WHO classification. It is only seen in infants and toddlers (median age
0.7 years, range 0.1–2.7 years) and in AMKL cases (5 to 10% of non-DS-AMKL) (Table 2
and Figure 2) [22,48,61–64]. It leads to fusion of the 5′ part of RBM15 (OTT) and the 3′

part of MKL1 (MAL) located at 1p13.3 and 22q13.2, respectively. In a knock-in murine
model, this fusion induces abnormal megakaryopoiesis and transformation to AMKL,
similar to the human form of the disease, with hepatosplenomegaly and liver and bone
marrow fibrosis [48,119,120]. This entity shows an intermediate outcome [48,63]. Of note,
a high proportion of normal metaphases are seen in the karyotypes, which present mainly
with few ACAs (in fewer than one-third of cases and mainly in older infants), typically as
hyperdiploid karyotypes with duplication of the der(1)t(1;22), and gains in chromosomes 2,
6, 19, and 21 [48,60,61,64]. Furthermore, the frequently associated myelofibrosis can impair
cytogenetic and PCR analyses; thus, FISH screening for this primary abnormality provides
an appropriate diagnostic test in infant AMKL [64].
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Figure 2. Distribution of cytogenetic subgroups in non-DS pediatric AMKL (adapted from De Rooij 2017 [63] and Masetti
2019 [65].

2.2.8. The Cryptic Inversion, inv(16)(p13.3q24.3)/CBFA2T3-GLIS2

In 2012, a cryptic inversion of chromosome 16, inv(16)(p13.3q24.3)/CBFA2T3-GLIS2,
was identified in 27–31% of non-DS pediatric AMKL, thus representing the most frequent
aberration found in de novo pediatric AMKL (Table 2 and Figure 2) [121,122]. This abnor-
mality results in fusion of the 5’ part of CBFA2T3 (ETO2) (16q24) and the 3’ part of GLIS2
(16p13.3), leading to an increase in self-renewal capacities of megakaryoblastic progenitors
by the upregulation of ERG and downregulation of GATA1. [123] Later, this abnormality
was shown to not be restricted to AMKL [66], although half of reported cases of CBFA2T3-
GLIS2 AML cases were AMKL, with a median age of 1.5 years (range 0.5–4 years), a female
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predominance (two-thirds of cases), and a poor prognosis [48,63,64]. This poor prognosis
is also shared by non AMKL CBFA2T3-GLIS2 cases, who are usually older children of
median age 12.4 years (range 0.3–17.2 years). In a study focusing on normal karyotype
(NK) pediatric AML, CBFA2T3-GLIS2 AML accounted for 8% of NK-AML, whereas another
study reported that these cases represented 2% of patients with FLT3-ITD at a low allelic
ratio [66,67]. Of note, two-thirds of CBFA2T3-GLIS2 AML cases presented with ACAs,
mostly as chromosomal gains leading to hyperdiploid karyotypes (47–49 chromosomes),
with trisomy 3 being characteristic and present in 20% of cases, followed by trisomy 21
and gain of the Y chromosome [48,67]. Interestingly, CBFA2T3-GLIS2 AML presents with a
peculiar “RAM” immunophenotype characterized by high CD56 (NCAM) expression and
low or no expression of HLA-DR, CD45 and CD38 antigens. This aberrant RAM phenotype
can assist in diagnosis, MRD monitoring, and providing the possibility of targetable anti
CD56 therapy [67,124]. These patients showed a poor outcome, with only half achieving
complete remission; 25% presented with extramedullary disease and overall survival rates
ranging from 15 to 30% [48,64–67].

2.3. Unbalanced Cytogenetic Abnormalities

In addition to classical reciprocal translocations, other types of recurrent cytogenetic
abnormalities occur in pediatric AML, including the gain or loss of material or numerical
aberrations, which are found in around 40% of childhood AML [56]. The most prognosti-
cally significant are monosomy 5, deletion of the long arm of chromosome 5 (del(5q)), and
monosomy 7. Although they are associated with a poor outcome, they occur in fewer than
5% of patients [1,18,22,28].

2.3.1. Partial or Total Loss of Chromosomes
Monosomy 7 and del(7q)

Monosomy 7 and deletion of the long arm of chromosome 7, del(7q), are frequent in
childhood myelodysplasic syndromes (MDS), where they account for 40% cases [125]. In
pediatric AML, in the largest retrospective study published to date, these abnormalities
were compared [69]. Both abnormalities may be present as secondary abnormalities.
Deletions (7q), are more frequently associated with CBF leukemia, whereas monosomy
7 is more often associated with adverse primary abnormalities, such as inv(3)(q21q26)
described above. Nevertheless, when they are considered as sole abnormalities, monosomy
7 and del(7q) occur at a similar frequency of 3%, and occur at a similar median age (7.2 years
and 7.6 years, respectively). However, monosomy 7 cases have a poor prognosis (5-year
OS, 35%, 5-year EFS 28%) whereas in del(7q) patients, prognosis is intermediate (5-year OS,
43%, 5-year EFS 39%) [22,28,69]. In more recent studies, the poor prognosis of monosomy
7 was confirmed to be mainly due to a higher risk of resistance to induction therapy
(71%–83% CR) [22,28]. Of note, both abnormalities, and especially monosomy 7, can be
acquired during the evolution of predisposition syndromes, such as GATA2 deficiency and
SAMD9/SAMD9L germline mutations syndromes, although can also be found in apparent
“de novo” AML [126,127].

Monosomy 5 and del(5q) (-5/5q-)

Thus far, in the largest pediatric AML study, 26 cases of -5/5q- among 2240 cases were
identified (1.2%). Median age was 12.5 years (0.3–20.7 years) and two-thirds of patients
were over 11 years of age [68]. A significant association with the FAB M0 subtype was
found (24%). No cases had monosomy 5 as the sole abnormality, and most patients (81%)
presented with ACAs, mainly as complex karyotypes: two-thirds with at least two ACAs
and half of cases with at least three ACAs. Among these ACAs, loss of 17p, identified
by karyotyping, was prevalent (23% of all cases) mostly among complex karyotypes. Of
note, only two cases presented with del(7q), and no cases had monosomy 7. As reported in
adults, the prognosis was poor, with a 5-year EFS of 23% and an overall survival (OS) of
7%, similar to that previously reported by the UK MRC trial [22]. However, in this study,
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the authors noted that it was difficult to assign a poor prognosis to del(5q) alone, because
these cases are very rare. Additionally, in this study, complex karyotypes were not found
to show prognostic significance. Of note, del(5q) occurs as a secondary abnormality in
at least two subtypes of AML with cryptic abnormalities: t(5;11)(q35;p15)/NUP98-NSD1
and the rare t(7;21)(p22;q22)/RUNX1-USP42, thus emphasizing the need for a complete
cytogenetic and molecular screening of such cases [29,128,129].

2.3.2. Gains of Chromosomes
Trisomy 8

Trisomy 8 is found in around 10 to 14% of childhood AML, either as the sole cytoge-
netic change or associated with another structural of numerical abnormality (see below,
hyperdiploid karyotypes) [22,70]. Trisomy 8, as the sole abnormality, is found in only 3%
of cases. It is more frequently associated with older age in children (median age 10.1 years)
and FLT3-ITD mutations [70]. In the most recent BFM trial, trisomy 8 as a sole abnormality
had a poor outcome, but no molecular data were provided. Notably, trisomy 8 occurs
mainly as a secondary cytogenetic change, thus indicating the need to search for a primary
cryptic abnormality, such as 11p15/NUP98r [5].

2.3.3. Complex, Hyperdiploid and Monosomal Karyotypes

Complex karyotypes (CKs) and monosomal karyotypes (MKs) are well known poor
prognosis factors in adult AML [111,130]. However, there is no consensus in pediatric
AML. In the BFM98 trial analysis, CK, defined as “three or more CAs, including at least
one structural CA, excluding favorable cytogenetics and KMT2Ar”, was a poor risk factor
found in 8% of cases [28]. However, in the MRC trial, using a similar definition (KMT2Ar
were not excluded), CKs were represented in 15% of cases, and showed an intermediate
prognosis. Even if CK was expanded to include at least five CAs, or if CK was divided into
typical complex karyotypes (comprising -5/5q-, monosomy 7 or del(17p)and atypical CK,
without these abnormalities, no association with poor risk emerged [22].

In relation to CK, three or more numerical gains, without structural abnormalities,
would also be considered as CK. In the first large study of such hyperdiploid cases, with
49–65 chromosomes seen at the karyotype level in AML, only two children with AML M7
were included (1 DS et 1 non-DS) [131]. Two subsequent large studies, including pediatric
cases, identified that, in hyperdiploid cases with solely numerical gains, these gains were
not random, with trisomies 8, 21, 19 and 6 being most frequently observed. These cases,
without accompanying adverse cytogenetic rearrangements, were not shown to have the
poor prognosis normally considered for CK [56,71]. Hyperdiploidy with a modal number
between 49 and 65 chromosomes, was associated with infant cases, acute megakaryoblastic
leukemia, and lower WBC [56].

Monosomal karyotypes (MKs) have been defined as two or more autosomal mono-
somies or one autosomal monosomy with at least one structural abnormality (excluding
marker or ring chromosomes) and without the favorable CA: (t(15;17)(q22;q21); t(8;21)
(q22;q22); inv(16)(p13q22)/t(16;16)(p13;q22)) [130]. In the more recent BFM trial, using
the same previous BFM criteria for CK definition, CK cases had a poor prognosis only
if they were monosomal. Furthermore, all MK cases (3% of total cases) were associated
with a poor prognosis, even after the exclusion of monosomy 7. MK was associated with a
younger age (median age 3.9 years) and showed significantly lower EFS and OS (23% and
35%, respectively) compared to other patients. This poor prognosis of MK was worsened in
hypodiploid karyotypes [5]. The NOPHO-DBH-AML study confirmed the poor prognosis
of MK (5-year EFS 34% vs. 49%, for non-MK cases) with more frequent refractory disease,
although the OS was similar to non-MK patients [6].
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2.4. Normal Karyotypes

Normal karyotypes account for around one-quarter (22–26%) of pediatric AML [22,28,36].
Their risk assignment is based on the search for cryptic cytogenetic abnormalities (for ex-
ample, NUP98r) and for somatic mutations with well-established prognosis relevance,
such as NPM1, FLT3-ITD and CEBPAdm, in the current adult and pediatric therapeutic
trials [7,8,132]. Indeed, even though these mutations are found at a much lower level
in children than in adults, increasing with age, they share the same prognostic signifi-
cance [132,133]. FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD), found
in 10–20% of pediatric AML, was initially associated with a poor prognosis if the mutated
allele ratio (ITD-AR, ITD to wild-type ratio) was high [134]. However, updated analysis
has suggested that even at a lower ratio (0.1–0.4), FLT3-ITD retains its poor prognostic
impact [135]. These patients may benefit from a targeted therapy in the same way as adult
cases [136]. Notably, co-occurrence of NPM1 mutations, associated with a good prognosis,
overrides the poor prognosis associated with FLT3-ITD [46,137]. Conversely, WT1 mutation
co-occurrence with FLT3-ITD worsens the prognosis [46,135]. Of note, as emphasized in
the adult ELN 2017 risk classification (see Table 3), FLT3-ITD mutations should not be used
as adverse prognostic markers if they occur within favorable cytogenetic risk groups such
as CBF leukemia.

NPM1 and CEBPA double mutations (dms), accounting for around 9% and 4% of
pediatric AML cases, respectively, are associated with a good prognosis. They are mainly
found in normal karyotype cases, assigning them to a low risk category [36,137–139].
Of note, CEBPA may be a germline mutation, predisposing to AML, especially in cases
with a double mutation (dm), emphasizing the need for investigation of these patients
in remission. If one of the mutated alleles remains at a high variant allele frequency
(VAF), of around 50%, suspicion of an inherited mutation is high, highlighting the need
for genetic counseling in order to confirm the constitutional and familial origin of this
mutation [10,140].

Large studies using high throughput sequencing have confirmed these mutations,
well-known fusion genes, and copy number alterations (CNAs), but also have identified
novel mutations and fusion genes, highlighting age-specific cytogenetic/molecular profiles
and precising the molecular landscape of pediatric AML [4,46,50,96].
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Table 2. Main cytogenetic subgroups in pediatric AMKL.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Non-DS AMKL

Median Age,
(Range), years Special Features Secondary CA

Secondary
Molecular

Abnormalities
Prognosis References

DS AMKL

Trisomy 21c
GATA1 (Xp11)

truncating
mutation

NA 1.7
(0.4–3.8)

85–97% of DS-AML
were M7

TAM in 25% of DS
pts that can evolve
towards M7 in 10%

of cases

tri 8, gain of a
third chr 21, gain

of 1q

Mutations in
cohesin complex

genes (STAG2,
RAD21, . . . ), MPL,
RAS, JAK2, JAK3

Good
(impaired by
trisomy 8?)

[9,141–144]

Non-DS AMKL 1.6
(0.1–17)

Mainly infants
Hepatosplenomegaly
Myelofibrosis that

can impair sampling
for diagnosis

[48,62–64]

inv(16)(p13.3q24.3) * CBFA2T3-GLIS2 20%
(16–27%)

1.5
(0.5–4)

Infants,
extramedullary

disease, CD56++

tri 21
tri 3

Low frequency of
mutations Very Poor [48,63–65]

t(1;22)(p13;q13) RBM15-MKL1 12–14% 0.7
(0.1–2.7)

Only M7
Hepatosplenomegaly,

Fibrosis

Mainly no ACA
HD karyotypes, tri

1q (unbalanced
t(1;22) in 26% of

cases)

Low frequency of
mutations Intermediate [48,60–64]

11q23.3/KMT2r KMT2A with
multiple partners 10–15% 1.9

(0.7–12)

Only 3% of KMT2Ar
pediatric AML were

M7

tri 19,
tri 21

Low frequency of
mutations,

overexpression of
HOX genes

Poor [44,48,62–64]

t(9;11)(p22;q23) KMT2A-MLLT3
(AF9) 6–10%

t(10;11)(p12;q23)/
ins(10;11)(p12;q23q13)

***

KMT2A-MLLT10
(AF10) 1–3%

t(6;11)(q27;q23) KMT2A-MLLT4
(AF6) 1%
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Table 2. Cont.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Non-DS AMKL

Median Age,
(Range), years Special Features Secondary CA

Secondary
Molecular

Abnormalities
Prognosis References

t(11;17)(q23;q12) KMT2A-MLLT6
(AF17) 0.7–1%

t(11;19)(q23;p13.3) KMT2A-MLLT1
(ENL) 0.5–1%

t(4;11)(q21;q23) KMT2A-AFF1
(AF4) 0.5%

12p13
abnormalities

NUP98-KMD5A
ETV6 (12p13.1)

del(12p)
Poor [22,28]

t(11;12)(p15;p13) * NUP98-KMD5A 10% 1.9
(0.8–8.5)

34% of cases were
M7

CK (numerous
numerical and
structural CA);
RB1 deletion

(13q14)

Low frequency of
mutations; low
RB1 expression;

overexpression of
HOX genes

Poor [47,48,52,63,
64]

t(7;12)(q36;p13) * ETV6; MNX1 very rare 0.5
(0.2–1.9)

4/42 cases were M7
Only infants tri 19 (3/4 cases) Unknown Poor [53]

HOX-r

HOX family genes
(HOXA9,

HOXA10, HOXB9,
. . . )

14% trisomy 19,
trisomy 21

Overexpression of
HOX genes Good [64,65]

t(3;7)(q21;p15.2) GATA2-HOXA9 rare [64]

t(3;7)(q21;p15.2) GATA2-HOXA10 rare [64]

t(5;7)(p13.2;p15.2) NIPBL-HOXA9 rare [64]

t(5;17)(p13.2;q21.3) NIPBL-HOXB9 rare [64]

t(11;22)(q24;q12) MN1-FLI1 rare [141]
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Table 2. Cont.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Non-DS AMKL

Median Age,
(Range), years Special Features Secondary CA

Secondary
Molecular

Abnormalities
Prognosis References

GATA1 mutation
GATA1 (Xp11)

truncating
mutation

7% Search for a DS
(mosaicism)

tri 21 in nearly all
cases

Same gene
expression profile

as DS-AMKL
Good [64]

Monosomy 7 / 7–8% 1.5
(0.5–17.1)

Exclude a primary
abnormality and a

predisposition
syndrome (GATA2)

/
Frequently as part

of a complex
karyotype

Poor [48,62–64]

Abnormal 7p unknown
(HOXA9?) 12% 1.8

(0.5–8.2)

50% of abn7p cases
were translocations;

search for HOXr
(7p15)

Good?
Intermediate? [62,64]

del13q unknown (RB1?) 4% 1.5
(0.6–4.9)

Search for a primary
stratifying CA that

can be cryptic
(NUP98-KDM5A)

[62]

Hyperdiploidy
(47–84 chr)

% in AMKL:
tri 21 (36%),
tri 19 (24%)
tri 8 (20%)
tri 6 (15%)

50%
Search for a primary
stratifying CA that

can be cryptic
/ /

According to
cryptic CA and

mutations or
intermediate

[48,62,63]

Hyperdiploidy
(47–50 chr) / 38% 1.7

(0.1–15)

Search for a primary
stratifying CA that

can be cryptic
/ / [62]

Hyperdiploidy
(51–84 chr) / 12% 1.7

(0.6–6.5)

Search for a primary
stratifying CA that

can be cryptic
/ / [62]



Genes 2021, 12, 924 20 of 32

Table 2. Cont.

Cytogenetic
Subgroups

Fusion Gene or
Genes Involved

Frequency in
Non-DS AMKL

Median Age,
(Range), years Special Features Secondary CA

Secondary
Molecular

Abnormalities
Prognosis References

Complex

At least 3
independent CAs

including a
structural CA

50% 1.5
(0.4–15)

Search for a primary
stratifying CA that

can be cryptic
/ /

According to
cryptic CA and

mutations or
intermediate

[5,6,22,28]

Normal karyotype / 13–16% 1.5
(0.1–16)

Search for a cryptic
CA or prognostic

mutation
/ /

According to
cryptic CA and

mutations or
intermediate

[48,62,63]

Abbreviations: AMKL: acute megakaryoblastic leukemia; CA: cytogenetic abnormality; CK: complex karyotype (at least 3 CAs); HD: hyperdiploidy; mon: monosomy; NA: not applicable; r: rearrangement; TAM
transient abnormal myelopoiesis; tri: trisomy. * Cryptic abnormality. ** Infants: children under 2 years old. *** A complex rearrangement or a cryptic insertion is necessary to create a fusion gene (see text).
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Table 3. Pediatric and Adult AML cytogenomic risk stratification according to and adapted from Creutzig et al. [1] and
Döhner et al. [21], respectively.

Risk Category Pediatric AML Risk Stratification Adult AML Risk Stratification
(Excluding APL *)

Favorable

t(15;17)(q24;q21)/PML-RARA *
t(8;21)(q22;q22)/RUNX1-RUNX1T1
inv(16)(p13q22) or t(16;16)(p13q22)/CBFB-MYH11
t(1;11)(q21;q23)/KMT2A-MLLT11(AF1Q) **
Cytogenetically normal cases with:
-NPM1 mutation;
- CEBPA double mutation
GATA1 mutation **.

t(8;21)(q22;q22)/RUNX1-RUNX1T1
inv(16)(p13q22) or t(16;16)(p13q22)/CBFB-MYH11
NPM1 mutation without FLT3-ITD or with
FLT3-ITDlow †
CEBPA double mutation

Intermediate CAs not classified as favorable or adverse

CAs not classified as favorable or adverse
t(9;11)(p21;q23)/KMT2A-MLLT3 (AF9) ‡
NPM1 mutation with FLT3-ITDhigh †
Wild-type NPM1 without FLT3-ITD or with
FLT3-ITDlow † (without adverse-risk genetic
lesions)

Adverse

inv(3)(q21q26) or t(3;3)(q21;q26)/GATA2; MECOM
(EVI1)
del(5q), -5
-7 ƒ
t(6;9)(p23;q34)/DEK-NUP214
t(4;11)(q27;q23)/KMT2A-MLLT2(AF4)
t(6;11)(q27;q23)/KMT2A-MLLT4(AF6)
t(10;11)(p13;q23)/KMT2A-MLLT10(AF10)
t(5;11)(q35;p13)/NUP98-NSD1 **
t(7;12)(q36;p13)/ETV6(TEL); HLXB9(MNX1) **
t(9;22)(q34;q11)/BCR-ABL1
Complex karyotype (≥3 CAs) ƒ
FLT3-ITD mutation §
WT1 mutation §

inv(3)(q21q26) or t(3;3)(q21;q26)/GATA2; MECOM
(EVI1)
del(5q), -5
-7 ƒ
t(6;9)(p23;q34)/DEK-NUP214
t(v;11q23)/KMT2Ar ††
t(9;22)(q34;q11)/BCR-ABL1
Complex karyotype (≥3 CAs) ƒ
-17/abn17p and /or TP53 mutation # ***
Monosomal karyotype ƒƒ
FLT3-ITDhigh † §
ASXL1 mutation §
RUNX1 mutation §

NOTE. Favorable, Intermediate, and Adverse were defined according to the definitions given by Creutzig et al., 2012 (1): Favorable indicates
5-year survival >60% in adults and >70% in children; Intermediate, 23–60% in adults and 50–70% in children; and Adverse, <23% in adults
and <50% in children. Abbreviations: APL: acute promyelocytic leukemia; CA: cytogenetic abnormality. * t(15;17)(q24;q21)/PML-RARA
APL is treated separately from other AMLs (see text). ** Abnormalities are rare or absent in adult AML. *** Abnormalities are rare or absent
in pediatric AML. † Low, low allelic ratio (<0.5); high, high allelic ratio (≥0.5). ‡ The presence of t(9;11)(p21.3;q23.3) takes precedence over
rare, concurrent adverse-risk gene mutations. ƒ In the absence of the WHO-designated recurring translocations or inversions. †† excluding
t(9;11)(p21;q23)/KMT2A-MLLT3. ƒƒ Defined by the presence of 1 single monosomy (excluding the loss of X or Y) in association with at least
1 additional monosomy or structural chromosome abnormality (excluding core-binding factor AML). # TP53 mutations are significantly
associated with AML with complex and monosomal karyotype in adults. § These markers should not be used as an adverse prognostic
marker if they co-occur with favorable-risk AML subtypes.

3. Special Considerations: FAB Subtype (M7), Age, Predisposition
3.1. Acute Megakaryoblastic Leukemia

Acute megakaryoblastic leukemia (AMKL), (FAB classification AML M7), constitutes a
distinct AML subtype in children. The accumulation of malignant megakaryoblasts is often
accompanied by bone marrow fibrosis that can impair sampling for diagnosis [141]. Two
types of AMKL must be distinguished: Down syndrome (DS) and non-Down syndrome
AMKL. (Table 2, Figure 2)

Down syndrome (DS) children have a 150-fold higher risk of AML compared to
non-DS children, and AMKL is the most frequent AML subtype. It is characterized by a
founding GATA1 mutation, leading to a transient abnormal myelopoiesis (TAM) found
in about 25% of newborns, which can evolve to a full AMKL in 10% of cases before
the age of 5 years [9,141,142]. DS-AMKL blasts harbor megakaryoblastic and erythoid
markers; therefore, it is reported in the WHO classification as “myeloid leukemia associated
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with Down syndrome” (ML-DS), which shows excellent response and cure with reduced
doses of chemotherapy. Of note, acquired cytogenetic abnormalities, present in around
two-thirds of cases (mainly trisomy 8, gain of another chromosome 21 and 1q gain), did
not impact on the outcome in one study, whereas in another, trisomy 8 indicated a poor
prognosis [143,144].

Non DS-AMKL occurs in about 10% of pediatric AML, mainly in infants with a
median age of about 1.5 years [62–64,145,146]. It is globally associated with adverse
outcomes, with an overall survival between 42 and 49% and a relapse rate approaching
50% [62,63]. However, as mentioned above, several cytogenetic subgroups are associated
with different prognoses. In a recent international collaborative study gathering 153 AMKL
cases, t(11;12)/NUP98-KDM5A, inv(16)/CBFA2T3/GLIS2, KMT2Ar and monosomy 7 cases
(9%, 16%, 9% and 6% of cases, respectively), defined as the NCK-7 group accounting for
40% of cases, independently predicted a poor outcome. In comparison, the other group
including t(1;22)/RBM15-MKL1, hyperdiploidy, 7p abnormalities and normal karyotype,
accounting for 12%, 22%, 9% and 13% of cases, respectively, showed an improved outcome
(4-year OS of 35% vs. 70%, 4-year EFS of 33% vs. 62%, 4-year CIR of 42% vs. 19%
for the NCK-7 and the other group, respectively) [64]. Of note, the previously good
prognosis associated with 7p abnormalities [62] was not confirmed. Interestingly, 14%
of non DS-AMKL are HOXr cases, and some of these 7p abnormalities are induced by
the rearrangement of HOXA9 and HOXA10 genes both located at 7p15.2 [63]. Finally,
GATA1 mutations, which are characteristic of DS-AMKL, can also be found in 9% of
non DS-AMKL; trisomy 21 is a constant feature in these cases, raising the possibility of
constitutional mosaicism for trisomy 21, as demonstrated in 1/10 of these cases with
available non-hematopoietic tissue [63]. Of note, similar findings have been reported
in TAM occurring in phenotypically normal newborns, and thus suggests a search for
constitutional trisomy 21 mosaicism in these cases [147].

3.2. Changes in Cytogenetic and Molecular Genetics According to Age

A large German study based on routine diagnostic cytogenetic and molecular data
in children with AML (more than one thousand pediatric cases (0–18 years) and four
thousand adults) confirmed the variation in cytogenetic/molecular subtypes in relation
to age between adults and children and among children. Children were separated into
three age groups: 0–2 years as infants, 2–12 years and 12–18 years, representing 23%,
40% and 23% of childhood cases, respectively, and striking genomic differences were
found. Infants presented with fewer cases in the favorable cytogenetic groups, such
as t(8;21) CBF leukemia and t(15;17) APL, with no NPM1 or CEBPA dm cases, whereas
KMTAr cases were prevalent, mainly with t(9;11)/KMT2A-MLLT3. In the 2–12 year range,
CBF leukemia was prevalent but slowly decreased thereafter, whereas KMTAr cases and
especially t(9;11)/KMT2A-MLLT3 decreased in incidence. Normal karyotypes increased
with age from 14% in infants to 27% in older children. The rate of intermediate risk
cytogenetic subtypes was similar in all three age groups, at around 50% [24].

More recently, a Japanese study analyzed 723 pediatric patients and confirmed the sim-
ilar genomic profile of children 0–1 and 1–2 years old, including inv(16)/CBFA2T3-GLIS2
and t(11;12)/NUP98-KDM5A cryptic rearrangements. They suggested that, at the genomic
and clinical level, cases in children could be separated by a 3-year age threshold, where
the KMT2r cases fared better and the inv(16)/CBFB-MYH11 had a less favorable outcome
in the younger children. The higher rate of t(9;11) cases in younger children was not
retained, because these KMTAr subtypes fared better in younger patients, probably due to
a significantly lower incidence of high EVI-1 expression. The inferior inv(16)/CBFB-MYH11
prognosis seen in infants could be due to the lowered level of intensity of chemotherapy
because the increased sensitivity to chemotherapy of younger infants (age < 1 year) was
taken into consideration [96].

High-throughput genomic analyses of nearly one thousand pediatric cases, enrolled
in successive COG protocols, confirmed a similar genomic profile and indicated the same
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3-year threshold. It confirmed the inferior prognosis of EVI-1 high expression in KMT2A-
MLLT3 patients. These differences in genomic profiles according to age, with an increasing
rate of ACA or mutations, likely have some pathogenetic explanations. For example, the
presence of fusion genes has been shown in cord blood and differences in the latency
period towards the development of AML according to genetic subtypes were seen. Fetal
hematopoiesis is retained until the age of 3 years, more recently demonstrated in murine
models [23]. However, the 3-year threshold is not a consensus, because other studies have
alternatively suggested a 2-year threshold [27,36,148].

Comparison between the most recent international children and adult genomic risk-
stratifications at diagnsosis [1,21] (Table 3) shows that most of the AML genetic subgroups
are common and share the same prognosis value; for instance, t(8;21)(q22;q22)/RUNX1-
RUNX1T1 and t(6;11)(q27;q23)/KMT2A-MLLT4 are classified within the favorable and
adverse risk subgroups, respectively, whatever the age of the patient. On the other hand,
some genetic subgroups with poor prognosis value do not appear in the latest ELN 2017
adult classification, either because they are never observed in adults, such as the infant-
specific t(7;12)(q36;p13)/ETV6;MNX1 [53], or are observed in only 2% of adult cases such
as the t(5;11)(p15;q35)/NUP98-NSD1 [95]. Conversely, poor prognostic abnormalities, such
as typical complex karyotypes (comprising -5/5q-, monosomy 7 or del(17p)), are rarely
observed in children, explaining, at least partly, the discussed value of complex karyotypes
in children. In the same way, the scarcity of chromosome 17p abnormalities and TP53
mutations in children, as recently reported in a large genome sequencing study comparing
adult and children mutational landscapes, explains the lack of risk assignment of these
abnormalities in children [46]. Interestingly, in the same study, the poor prognosis value
of FLT3-ITD could be modified by the co-occurrence of NPM1 mutation, but this fact was
observed only in children, probably due to the co-occurrence of DNMT3A mutation in
adults [46].

3.3. AML Predisposition Syndromes

In adults, AML may classically be an evolution of a myelodysplastic or myelopro-
liferative neoplasm (MDS and MPN, respectively), whereas for children, AML occurring
after an MDS/MPN, such as juvenile myelomonocytic leukemia (JMML), are rare [149]. On
the other hand, children with constitutional genetic pathologies, such as Down syndrome
or inherited bone marrow failure syndrome (IBMFS), have a higher risk of developing
AML [9,150]. In the last decade, more subtle phenotypic syndromes linked to germline mu-
tations, conferring a high susceptibility to development of MDS and AML, have been identi-
fied [4,10]. Some of them involve genes implicated in normal and malignant hematopoiesis,
such as RUNX1 or CEBPA. Taking into account that the same mutations can be acquired in
sporadic leukemia emphasizes the need for confirmation of the acquired/constitutional
nature of the mutation [151,152]. More recently, GATA2 has been described as one of the
most frequent germline mutated genes predisposing to pediatric AML and MDS, identified
with a high frequency (72%) in adolescent AML/MDS with monosomy 7 [153]. Defects
in genes implicated in megakaryopoiesis, such as ETV6 or ANKRD26, are known to be
responsible for familial thrombopenias and platelet disorders preceding AML, known as
FPD/AML [39,154]. Other MDS/AML predisposing genes have been described in the liter-
ature, either in the context of a familial history of cancers or bleeding or immunodeficiency
syndromes [10,140]. The presence of a germline mutation implicates major consequences
for the patient and their family. Thus, every newly diagnosed patient of AML should be
screened for potential germline abnormalities, which becomes even more important if these
familial hematological disorders are identified in light of potential intrafamilial donors for
HSCT [10].

4. Cytogenetics Versus Molecular Analysis

Cytogenetic and molecular (cytogenomic) evaluation remains an important part of the
diagnosis and prediction of prognosis in pediatric AML, leading to the rapid and accurate
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assignment of patients to risk-adapted therapies. In adult AML, lack of cytogenetic infor-
mation (karyotype and subsequent FISH/molecular analyses not performed at diagnosis
or karyotype failure) could impair the outcome of these patients because they could not
benefit from a risk-adapted therapy [155]. The proposed workflow for pediatric AML at
diagnosis (Graphical Abstract) summarizes the laboratory practice according to the most
recent recommendations [1,31–33,38] and to the current risk-adapted therapeutic trials such
as the French-U.K. MyeChild 01 trial (https://clinicaltrials.gov/ct2/show/NCT02724163)
accessed on 4 June 2021.

New technologies such as whole genome sequencing (WGS) could replace such work-
flows in the future, as suggested in a recent cost/effect comparative adult AML study [156].
However, a very high rate of unsuccessful karyotypes was observed in this study (especially
if we include karyotypes with no abnormalities and fewer than 20 metaphases analyzed),
much higher than the 4% pediatric and adult AML rate observed in the French report of
quality indicators (C. Lefebvre and B. Gaillard for the GFCH, manuscript in preparation),
the 2–7% rate reported in adult AML [130,155], or the 3–7% range reported in pediatric
AML [22,157]. Furthermore, FISH analyses directed by karyotype results, as suggested in
our proposed workflow, such as CBFB-MYH11 fusion probe in cases with 16q22 breakpoint
or KMT2A break-apart probe in cases with non-informative karyotypes were not applied
(but rather applied after WGS), thus limiting the value of this comparative study. On
the other hand, this study emphasizes the possibility of reporting genomic results in one
week and lowering the current cost of WGS. Most karyotypes and complementary relevant
FISH performed for AML at diagnosis are reported within one week, and if we apply a
workflow similar to the one proposed here, which relies on current practice according to
European/French recommendations, much time and money can be saved.

5. Conclusions/Prospective Considerations

Cytogenetics (karyotype and FISH) completed by PCR-based methods and targeted
sequencing for the detection of fusion transcripts and mutations remains the gold standard
at diagnosis for AML. This combination enables a risk-assignment of nearly each AML
case, giving the best chance for the patient to benefit from a tailored therapy.

Moreover, children with de novo AML respond better than adults to intensive therapy
and we note continual improvements in outcome over time, in parallel with a better under-
standing of the cytogenetic and molecular AML landscape and the increasing possibilities
of targeted therapies.
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